

Stoichiometry

Chapter 3

 $\textbf{Copyright} \\ \textcircled{o} \\ \textbf{The McGraw-Hill Companies, Inc.} \\ \textbf{Permission required for reproduction or display.} \\$

Micro World atoms & molecules

Macro World grams

Atomic mass is the mass of an atom in atomic mass units (amu)

By definition: 1 atom ¹²C "weighs" 12 amu

On this scale

¹H = 1.008 amu

 $^{16}O = 16.00 \text{ amu}$

The *average atomic mass* is the weighted average of all of the naturally occurring isotopes of the element.

Naturally occurring lithium is: 7.42% ⁶Li (6.015 amu)

92.58% ⁷Li (7.016 amu)

Average atomic mass of lithium:

$$\frac{(7.42 \times 6.015) + (92.58 \times 7.016)}{100} = 6.941 \text{ amu}$$

1 H H Hydrogen 1.008	2 2A				10 — Ne Nem 20.18 -		Atomic n Atomic n					13 3A	14 4A	15 5A	16 6A	17 7A	18 8A 2 He Hdim 4.003
3 Li Liftiun 6.941	4 Be Berytiun 9.012		—— Average atomic mass (6.941)											7 N Natogea 14.01	8 O Ongen 16.00	9 F Haorine 19.00	10 Ne Neon 20.18
Na Sofium 22.99	Mg Mg Naposium 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	Al Al Altrison 26.98	14 Si Siicon 28.09	Phosphoras 30.97	16 S Seller 32.07	17 Cl Otteine 35.45	18 Ar Argon 39,95
19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scadam 44.96	22 Ti Titatian 47.88	23 V Vanadium 50.94	24 Cr Chronian 52.00	25 Mn Manganese 54.94	26 Fe Im 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Cupper 63.55	30 Zn Znc 65.39	31 Ga Galium 69.72	32 Ge Germains 72.59	33 As Anenic 74.92	34 Se Selenian 78.96	35 Br Bronine 79.90	36 Kr Krypton 83.80
37 Rb Bibidim 85.47	38 Sr Strotian 87.62	39 Y Yttiun 88.91	40 Zr Zaxoniam 91.22	41 Nb Notinn 92.91	42 Mo Mohidenn 95.94	43 Tc Technetium (98)	44 Ru Referien 101.1	45 Rh Bodum 102.9	46 Pd Pallidinn 106.4	47 Ag Silver 107.9	48 Cd Calmin 112.4	49 In Inform 114.8	50 Sn Tn 118.7	51 Sb Autimony 121.8	52 Te Tellurium 127.6	53 I Ioine 126.9	54 Xe Xeon 131.3
55 Cs Csim 132.9	56 Ba Brinn 137.3	57 La Lanhanan 138.9	72 Hf Hafrium 178.5	73 Ta Tantalun 180.9	74 W Tungsten 183.9	75 Re Menion 186.2	76 Os 0mim 190.2	77 Ir Infine 192.2	78 Pt Parison 195.1	79 Au Gold 197.0	Hg Mexary 200.6	81 Tl Tulium 204.4	82 Pb Lead 207.2	83 Bi Bismth 209.0	Polosium (210)	85 At Astrine (210)	86 Rn Rains (222)
87 Fr Fracian (223)	88 Ra Rafinn (226)	89 Ac Actinism (227)	104 Rf Rutherfoolinn (257)	105 Db Dibeinn (260)	106 Sg Salorgian (263)	107 Bh Behrinn (262)	108 Hs Hssian (265)	109 Mt Meinerism (266)	110 Ds Darnstadian (269)	111 Rg Roentgenian (272)	112	113	114	115	116	(117)	118
]																
	Metals Metalloids Nonmetals			58 Ce Cerium 140.1	59 Pr Pracodymium 140.9	60 Nd Neodynian 144.2	61 Pm Ponetiun (147)	62 Sm Smrim 150.4	63 Eu Empin 152.0	64 Gd Gadelinium 157.3	65 Tb Tertium 158.9	66 Dy Dysposium 162.5	67 Ho Holmium 164.9	68 Er Etiun 167.3	69 Tm Thuium 168.9	70 Yb Ytohian 173.0	71 Lu Lutetim 175.0
				90 Th Thorium 232.0	91 Pa Potacininn (231)	92 U Umin 238.0	93 Np Nepturion (237)	94 Pu Phtorian (242)	95 Am Ancrician (243)	96 Cm Curiun (247)	97 Bk Bekeliun (247)	98 Cf Calferian (249)	99 Es Enstrium (254)	100 Fm Ferrim (253)	101 Md Meaddevinn (256)	102 No Nobelian (254)	103 Lr Lawnian (257)

The Mole (mol): A unit to count numbers of particles

Dozen = 12

Pair = 2

The *mole (mol)* is the amount of a substance that contains as many elementary entities as there are atoms in exactly 12.00 grams of ¹²C

1 mol =
$$N_A$$
 = 6.0221367 x 10²³

Avogadro's number (N_A)

Molar mass is the mass of 1 mole of shoes marbles atoms

1 mole 12 C atoms = 6.022 x 10^{23} atoms = 12.00 g 1 12 C atom = 12.00 amu

> 1 mole 12 C atoms = 12.00 g 12 C 1 mole lithium atoms = 6.941 g of Li

For any element atomic mass (amu) = molar mass (grams)

7

One Mole of: Cu Fe 8

$$\frac{1^{12}\text{C atom}}{12.00 \text{ amu}} \times \frac{12.00 \text{ g}}{6.022 \times 10^{23} \, ^{12}\text{C atoms}} = \frac{1.66 \times 10^{-24} \text{ g}}{1 \text{ amu}}$$

1 amu = $1.66 \times 10^{-24} g$ or 1 g = $6.022 \times 10^{23} amu$

M = molar mass in g/mol

 N_A = Avogadro's number

.

How many atoms are in 0.551 g of potassium (K)?

0.551 g K x
$$\frac{1 \text{ mol K}}{39.10 \text{ g K}}$$
 x $\frac{6.022 \text{ x } 10^{23} \text{ atoms K}}{1 \text{ mol K}}$ =

8.49 x 10²¹ atoms K

Molecular mass (or molecular weight) is the sum of the atomic masses (in amu) in a molecule.

For any molecule molecular mass (amu) = molar mass (grams)

1 molecule
$$SO_2 = 64.07$$
 amu
1 mole $SO_2 = 64.07$ g SO_2

1

How many H atoms are in 72.5 g of C₃H₈O?

1 mol
$$C_3H_8O = (3 \times 12) + (8 \times 1) + 16 = 60 \text{ g } C_3H_8O$$

1 mol C_3H_8O molecules = 8 mol H atoms
1 mol H = 6.022 x 10^{23} atoms H

72.5 g
$$C_3H_8O$$
 x $\frac{1 \text{ mol } C_3H_8O}{60 \text{ g } C_3H_8O}$ x $\frac{8 \text{ mol H atoms}}{1 \text{ mol } C_3H_8O}$ x $\frac{6.022 \text{ x } 10^{23} \text{ H atoms}}{1 \text{ mol H atoms}}$ =

5.82 x 10²⁴ atoms H

8/17/12

Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound.

NaCl

1Na 22.99 amu

1Cl + 35.45 amu

NaCl 58.44 amu

For any ionic compound formula mass (amu) = molar mass (grams)

1 formula unit NaCl = 58.44 amu 1 mole NaCl = 58.44 g NaCl

13

What is the formula mass of $Ca_3(PO_4)_2$?

1 formula unit of $Ca_3(PO_4)_2$

3 Ca 3 x 40.08

2 P 2 x 30.97

8 O <u>+ 8 x 16.00</u>

310.18 amu

Percent composition of an element in a compound =

n x molar mass of element molar mass of compound x 100%

n is the number of moles of the element in 1 mole of the compound

%C =
$$\frac{2 \times (12.01 \text{ g})}{46.07 \text{ g}} \times 100\% = 52.14\%$$

%H = $\frac{6 \times (1.008 \text{ g})}{46.07 \text{ g}} \times 100\% = 13.13\%$
%O = $\frac{1 \times (16.00 \text{ g})}{46.07 \text{ g}} \times 100\% = 34.73\%$
52.14% + 13.13% + 34.73% = 100.00%

A process in which one or more substances is changed into one or more new substances is a *chemical reaction*A *chemical equation* uses chemical symbols to show what happens during a chemical reaction

reactants — products

3 ways of representing the reaction of H₂ with O₂ to form H₂O

Two hydrogen molecules + One oxygen molecule — Two water molecules

2H₂ + O₂ — 2H₂O

How to "Read" Chemical Equations

$$2 \text{ Mg} + \text{O}_2 \longrightarrow 2 \text{ MgO}$$

2 atoms Mg + 1 molecule O₂ makes 2 formula units MgO 2 moles Mg + 1 mole O₂ makes 2 moles MgO 48.6 grams Mg + 32.0 grams O₂ makes 80.6 g MgO

NOT

2 grams Mg + 1 gram O₂ makes 2 g MgO

21

Balancing Chemical Equations

 Write the correct formula(s) for the reactants on the left side and the correct formula(s) for the product(s) on the right side of the equation.

Ethane reacts with oxygen to form carbon dioxide and water

$$C_2H_6 + O_2 \longrightarrow CO_2 + H_2O$$

2. Change the numbers in front of the formulas (*coefficients*) to make the number of atoms of each element the same on both sides of the equation. Do not change the subscripts.

 $2C_2H_6$ **NOT** C_4H_{12}

Balancing Chemical Equations

3. Start by balancing those elements that appear in only one reactant and one product.

Balancing Chemical Equations

4. Balance those elements that appear in two or more reactants or products.

$$C_2H_6 + O_2 \longrightarrow 2CO_2 + 3H_2O \qquad \text{multiply } O_2 \text{ by } \frac{7}{2}$$

$$2 \text{ oxygen} \qquad 4 \text{ oxygen} + 3 \text{ oxygen} = 7 \text{ oxygen}$$
on left $(2x2)$ $(3x1)$ on right
$$C_2H_6 + \frac{7}{2}O_2 \longrightarrow 2CO_2 + 3H_2O \qquad \text{remove fraction}$$
multiply both sides by 2
$$2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$$

Balancing Chemical Equations

5. Check to make sure that you have the same number of each type of atom on both sides of the equation.

Amounts of Reactants and Products

- 1. Write balanced chemical equation
- 2. Convert quantities of known substances into moles
- 3. Use coefficients in balanced equation to calculate the number of moles of the sought quantity
- 4. Convert moles of sought quantity into desired units 26

Methanol burns in air according to the equation

$$2CH_3OH + 3O_2 \longrightarrow 2CO_2 + 4H_2O$$

If 209 g of methanol are used up in the combustion, what mass of water is produced?

grams $CH_3OH \longrightarrow moles CH_3OH \longrightarrow moles H_2O \longrightarrow grams H_2O$

molar mass CH₃OH

coefficients chemical equation

molar mass H_2O

209 g CH₃OH
$$\times \frac{1 \text{ mol-EH}_3\text{OH}}{32.0 \text{ g CH}_3\text{OH}} \times \frac{4 \text{ mol-H}_2\text{O}}{2 \text{ mol-EH}_3\text{OH}} \times \frac{18.0 \text{ g H}_2\text{O}}{1 \text{ mol-H}_2\text{O}} =$$

27

Limiting Reagent:

Reactant used up first in the reaction.

$$2NO + O_2 \longrightarrow 2NO_2$$

NO is the limiting reagent

 ${\rm O_2}$ is the excess reagent

In one process, 124 g of Al are reacted with 601 g of Fe₂O₃

$$2AI + Fe_2O_3 \longrightarrow AI_2O_3 + 2Fe$$

Calculate the mass of Al₂O₃ formed.

$$\mathsf{g}\,\mathsf{Al}\,\,\longrightarrow\,\,\mathsf{mol}\,\mathsf{Al}\,\,\longrightarrow\,\,\mathsf{mol}\,\mathsf{Fe}_2\mathsf{O}_3\,\mathsf{needed}\,\longrightarrow\,\,\mathsf{g}\,\mathsf{Fe}_2\mathsf{O}_3\,\mathsf{needed}$$

OR

 $g \; \mathsf{Fe_2O_3} \; \longrightarrow \; \mathsf{mol} \; \mathsf{Fe_2O_3} \; \longrightarrow \; \mathsf{mol} \; \mathsf{Al} \; \mathsf{needed} \; \longrightarrow \; \mathsf{g} \; \mathsf{Al} \; \mathsf{needed}$

124 g Al x
$$\frac{1 \text{ mol Al}}{27.0 \text{ g Al}}$$
 x $\frac{1 \text{ mol Fe}_2\text{O}_3}{2 \text{ mol Al}}$ x $\frac{160. \text{ g Fe}_2\text{O}_3}{1 \text{ mol Fe}_2\text{O}_3}$ = 367 g Fe₂O₃

Start with 124 g Al $\,\longrightarrow\,$ need 367 g Fe $_2$ O $_3$

Have more Fe₂O₃ (601 g) so Al is limiting reagent

29

Use limiting reagent (AI) to calculate amount of product that can be formed.

$$\mathsf{g}\,\mathsf{Al}\,\,\longrightarrow\,\,\mathsf{mol}\,\mathsf{Al}\,\,\longrightarrow\,\,\mathsf{mol}\,\mathsf{Al}_2\mathsf{O}_3\,\,\longrightarrow\,\,\mathsf{g}\,\mathsf{Al}_2\mathsf{O}_3$$

$$2AI + Fe_2O_3 \longrightarrow AI_2O_3 + 2Fe$$

$$124 \text{ gAf } \times \frac{1 \text{ mot Al}}{27.0 \text{ gAl}} \times \frac{1 \text{ mol Al}_2 O_3}{2 \text{ mol Al}} \times \frac{102. \text{ g Al}_2 O_3}{1 \text{ mol Al}_2 O_3} = 234 \text{ g Al}_2 O_3$$

At this point, all the AI is consumed and Fe_2O_3 remains in excess.

Reaction Yield

Theoretical Yield is the amount of product that would result if all the limiting reagent reacted.

Actual Yield is the amount of product actually obtained from a reaction.

% Yield =
$$\frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100\%$$