Stoichiometry

Chapter 3

| Micro World |
| :---: | :---: |
| atoms \& molecules |$\longrightarrow \quad$| Macro World |
| :---: |
| grams |

Atomic mass is the mass of an atom in atomic mass units (amu)

On this scale

$$
\begin{aligned}
& { }^{1} \mathrm{H}=1.008 \mathrm{amu} \\
& { }^{16} \mathrm{O}=16.00 \mathrm{amu}
\end{aligned}
$$

The average atomic mass is the weighted average of all of the naturally occurring isotopes of the element.

Naturally occurring lithium is:
$7.42 \%{ }^{6} \mathrm{Li}(6.015 \mathrm{amu})$
92.58\% ${ }^{7} \mathrm{Li}$ (7.016 amu)

Average atomic mass of lithium:
$\frac{(7.42 \times 6.015)+(92.58 \times 7.016)}{100}=6.941 \mathrm{amu}$

The Mole (mol): A unit to count numbers of particles

Pair $=2$

The mole (mol) is the amount of a substance that contains as many elementary entities as there are atoms in exactly 12.00 grams of ${ }^{12} \mathrm{C}$

$$
1 \mathrm{~mol}=N_{A}=6.0221367 \times 10^{23}
$$

Avogadro' s number (N_{A})

eggs
 Molar mass is the mass of 1 mole of shoes in grams atoms

1 mole ${ }^{12} \mathrm{C}$ atoms $=6.022 \times 10^{23}$ atoms $=12.00 \mathrm{~g}$ $1{ }^{12} \mathrm{C}$ atom $=12.00 \mathrm{amu}$

1 mole ${ }^{12} \mathrm{C}$ atoms $=12.00 \mathrm{~g}{ }^{12} \mathrm{C}$
1 mole lithium atoms $=6.941 \mathrm{~g}$ of Li

For any element
atomic mass (amu) = molar mass (grams)

How many atoms are in 0.551 g of potassium (K) ?
$1 \mathrm{~mol} \mathrm{~K}=39.10 \mathrm{~g} \mathrm{~K}$
$1 \mathrm{~mol} \mathrm{~K}=6.022 \times 10^{23}$ atoms K
0.551 gK $\times \frac{1 \text { mot } \mathrm{K}}{39.10 \mathrm{gK}} \times \frac{6.022 \times 10^{23} \text { atoms } \mathrm{K}}{1 \text { mot } \mathrm{K}}=$
8.49×10^{21} atoms K

Molecular mass (or molecular weight) is the sum of the atomic masses (in amu) in a molecule.

For any molecule molecular mass (amu) = molar mass (grams)

1 molecule $\mathrm{SO}_{2}=64.07 \mathrm{amu}$
$1 \mathrm{~mole} \mathrm{SO}_{2}=64.07 \mathrm{~g} \mathrm{SO}_{2}$

How many H atoms are in 72.5 g of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$?
$1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}=(3 \times 12)+(8 \times 1)+16=60 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
$1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ molecules $=8 \mathrm{~mol} \mathrm{H}$ atoms
$1 \mathrm{~mol} \mathrm{H}=6.022 \times 10^{23}$ atoms H

5.82×10^{24} atoms H

Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound.

1 Na
1 Cl
NaCl
+22.99 amu +35.45 amu
58.44 amu

For any ionic compound
formula mass (amu) = molar mass (grams)
1 formula unit $\mathrm{NaCl}=58.44 \mathrm{amu}$ 1 mole $\mathrm{NaCl}=58.44 \mathrm{~g} \mathrm{NaCl}$

What is the formula mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?

1 formula unit of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
3 Ca

2 P \begin{tabular}{r}
3×40.08

8 O

\quad

2×30.97

\hline
\end{tabular}

Percent composition of an element in a compound $=$ $\frac{n \times \text { molar mass of element }}{\text { molar mass of compound }} \times 100 \%$
n is the number of moles of the element in 1 mole of the compound
$\% \mathrm{C}=\frac{2 \times(12.01 \mathrm{~g})}{46.07 \mathrm{~g}} \times 100 \%=52.14 \%$
$\% \mathrm{H}=\frac{6 \times(1.008 \mathrm{~g})}{46.07 \mathrm{~g}} \times 100 \%=13.13 \%$
$\% \mathrm{O}=\frac{1 \times(16.00 \mathrm{~g})}{46.07 \mathrm{~g}} \times 100 \%=34.73 \%$
$52.14 \%+13.13 \%+34.73 \%=100.00 \%$
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

A process in which one or more substances is changed into one or more new substances is a chemical reaction

A chemical equation uses chemical symbols to show what happens during a chemical reaction
reactants \longrightarrow products
3 ways of representing the reaction of H_{2} with O_{2} to form $\mathrm{H}_{2} \mathrm{O}$

How to "Read" Chemical Equations

 $2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$2 atoms $\mathrm{Mg}+1$ molecule O_{2} makes 2 formula units MgO
 48.6 grams $\mathrm{Mg}+32.0$ grams O_{2} makes 80.6 g MgO

NOT
2 grams $\mathrm{Mg}+1$ gram O_{2} makes 2 g MgO

Balancing Chemical Equations

1. Write the correct formula(s) for the reactants on the left side and the correct formula(s) for the product(s) on the right side of the equation.

Ethane reacts with oxygen to form carbon dioxide and water

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

2. Change the numbers in front of the formulas (coefficients) to make the number of atoms of each element the same on both sides of the equation. Do not change the subscripts.
$2 \mathrm{C}_{2} \mathrm{H}_{6} \quad$ NOT $\mathrm{C}_{4} \mathrm{H}_{12}$

Balancing Chemical Equations

3. Start by balancing those elements that appear in only one reactant and one product.

$\begin{array}{ccc}2 \text { carbon } & 1 \text { carbon } & \text { on right } \\ \text { on left } & \text { multiply } \mathrm{CO}_{2} \text { by } 2\end{array}$

6 hydrogen on left

2 hydrogen on right
multiply $\mathrm{H}_{2} \mathrm{O}$ by 3
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Balancing Chemical Equations

4. Balance those elements that appear in two or more reactants or products.

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \quad \begin{aligned}
& \text { remove fraction } \\
& \text { multiply both sides by } 2
\end{aligned}
$$

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Balancing Chemical Equations

5. Check to make sure that you have the same number of each type of atom on both sides of the equation.

$$
\begin{array}{cc}
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} & 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \\
4 \mathrm{C}(2 \times 2) & 4 \mathrm{C} \\
12 \mathrm{H}(2 \times 6) & 12 \mathrm{H}(6 \times 2) \\
14 \mathrm{O}(7 \times 2) & 14 \mathrm{O}(4 \times 2+6)
\end{array}
$$

Reactants	Products
4 C	4 C
12 H	12 H
14 O	14 O
	25

Amounts of Reactants and Products

1. Write balanced chemical equation
2. Convert quantities of known substances into moles
3. Use coefficients in balanced equation to calculate the number of moles of the sought quantity
4. Convert moles of sought quantity into desired units ${ }^{26}$

Methanol burns in air according to the equation

$$
2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

If 209 g of methanol are used up in the combustion, what mass of water is produced?
grams $\mathrm{CH}_{3} \mathrm{OH} \longrightarrow$ moles $\mathrm{CH}_{3} \mathrm{OH} \longrightarrow$ moles $\mathrm{H}_{2} \mathrm{O} \longrightarrow$ grams $\mathrm{H}_{2} \mathrm{O}$
molar mass
coefficients molar mass $\mathrm{CH}_{3} \mathrm{OH}$
chemical equation
$\mathrm{H}_{2} \mathrm{O}$
$209 \mathrm{gCH}_{3} \mathrm{OH} \times \frac{1 \mathrm{~mol}^{2} \mathrm{CH}_{3} \mathrm{OH}}{32.0 \mathrm{gCH}_{3} \mathrm{OH}} \times \frac{4 \mathrm{~mol}_{2} \mathrm{O}}{2 \mathrm{~mol}^{-\mathrm{CH}_{3} \mathrm{OH}}} \times \frac{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol}_{2} \mathrm{O}}=$

$$
235 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

Limiting Reagent:

Reactant used up first in the reaction.

$$
2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}
$$

NO is the limiting reagent
O_{2} is the excess reagent

Before reaction has started

After reaction is complete
다 $\mathrm{NO} \mathrm{O}_{2} \bigcirc \mathrm{NO}_{2}$

In one process, 124 g of Al are reacted with 601 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$

$$
2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}
$$

Calculate the mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$ formed.
$\mathrm{g} \mathrm{Al} \longrightarrow$ mol $\mathrm{Al} \longrightarrow$ mol Fe 2_{2} 符 \longrightarrow needed $\longrightarrow \mathrm{g} \mathrm{Fe}_{2} \mathrm{O}_{3}$ needed OR
$\mathrm{g} \mathrm{Fe} 2_{2} \longrightarrow \mathrm{O}_{3} \longrightarrow \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow$ mol Al needed $\longrightarrow \mathrm{g} \mathrm{Al}$ needed
$124 \mathrm{gAl} x \frac{1 \mathrm{motAT}}{270 \mathrm{gAT}} \times \frac{1 \text { mot } \mathrm{Fe}_{2} \mathrm{O}_{3}}{2 \mathrm{motAT}} \times \frac{160 . \mathrm{g} \mathrm{Fe}_{2} \mathrm{O}_{3}}{1 \mathrm{molFe}_{2} \mathrm{O}_{3}}=367 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$
Start with $124 \mathrm{~g} \mathrm{Al} \longrightarrow$ need $367 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$
Have more $\mathrm{Fe}_{2} \mathrm{O}_{3}(601 \mathrm{~g})$ so Al is limiting reagent

Use limiting reagent (AI) to calculate amount of product that can be formed.

$$
\begin{gathered}
\mathrm{gAl} \longrightarrow \mathrm{~mol} \mathrm{AI} \longrightarrow \mathrm{molAl}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{gAl}_{2} \mathrm{O}_{3} \\
2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}
\end{gathered}
$$

124 gat $\times \frac{1 \text { mot AT }}{27.0 \mathrm{gAT}} \times \frac{1 \mathrm{mot} \mathrm{Al}_{2} \mathrm{O}_{3}}{2 \mathrm{mot} \text { AT }} \times \frac{102 . \mathrm{g} \mathrm{Al}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol}_{2} \mathrm{Al}_{3}}=234 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$

At this point, all the Al is consumed and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ remains in excess.

Reaction Yield

Theoretical Yield is the amount of product that would result if all the limiting reagent reacted.

Actual Yield is the amount of product actually obtained from a reaction.

$$
\% \text { Yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100 \%
$$

