

A solution is a homogenous mixture of 2 or more substances

The solute is(are) the substance(s) present in the smaller amount(s)

The solvent is the substance present in the larger amount

Solution
Soft drink(I)
Air(g)
Soft Solder(s)

Solvent
$\mathrm{H}_{2} \mathrm{O}$
N_{2}
Pb
b

aqueous solutions of KMnO_{4}

An electrolyte is a substance that, when dissolved in water, results in a solution that can conduct electricity.

A nonelectrolyte is a substance that, when dissolved, results in a solution that does not conduct electricity.

nonelectrolyte

weak electrolyte
 strong electrolyte

Conduct electricity in solution?
Cations (+) and Anions (-)

Strong Electrolyte - 100\% dissociation

$$
\mathrm{NaCl}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

Weak Electrolyte - not completely dissociated

$$
\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(a q)
$$

Ionization of acetic acid $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}^{+}(a q)$

$\rightleftarrows \quad$ A reversible reaction. The reaction can occur in both directions.

Acetic acid is a weak electrolyte because its ionization in water is incomplete.

Hydration is the process in which an ion is surrounded by water molecules arranged in a specific manner.

Nonelectrolyte does not conduct electricity?
No cations (+) and anions (-) in solution

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)
$$

TABLE 4.1 Classification of Solutes in Aqueous Solution

Strong Electrolyte	Weak Electrolyte	Nonelectrolyte
HCl	$\mathrm{CH}_{3} \mathrm{COOH}$	$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ (urea)
HNO_{3}	HF	$\mathrm{CH}_{3} \mathrm{OH}$ (methanol)
HClO_{4}	HNO_{2}	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethanol)
$\mathrm{H}_{2} \mathrm{SO}_{4} *$	NH_{3}	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose)
NaOH	$\mathrm{H}_{2} \mathrm{O}^{\dagger}$	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (sucrose)

$\mathrm{Ba}(\mathrm{OH})_{2}$
Ionic compounds

* $\mathrm{H}_{2} \mathrm{SO}_{4}$ has two ionizable H^{+}ions.

Pure water is an extremely weak electrolyte.

Precipitation Reactions

Precipitate - insoluble solid that separates from solution

Pbl_{2}
precipitate
$\mathrm{I}_{2}(s)+2 \mathrm{NaNO}_{3}(a q)$ molecular equation
$\mathrm{Pb}^{2+}+2 \mathrm{NO}_{3}^{-}+2 \mathrm{Na}^{+}+2 \mathrm{I}^{-} \longrightarrow \mathrm{Pbl}_{2}(\mathrm{~s})+2 \mathrm{Na}^{4}+2 \mathrm{NO}_{3}^{-}$ ionic equation
$\mathrm{Pb}^{2+}+2 \mathrm{I}^{-} \longrightarrow \mathrm{Pbl}_{2}(s)$
net ionic equation
Na^{+}and $\mathrm{NO}_{3}{ }^{-}$are spectator ions

Precipitation of Lead Iodide

Solubility is the maximum amount of solute that will dissolve in a given quantity of solvent at a specific temperature.

TABLE 4.2 Solubility Rules for Common lonic Compounds in Water at $25^{\circ} \mathrm{C}$

Soluble Compounds	Insoluble Exceptions
Compounds containing alkali metal ions $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}\right.$, $\mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}$) and the ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$	
Nitrates $\left(\mathrm{NO}_{3}^{-}\right)$, bicarbonates $\left(\mathrm{HCO}_{3}^{-}\right)$, and chlorates $\left(\mathrm{ClO}_{3}^{-}\right)$	
Halides ($\left.\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right)$	Halides of Ag^{+}, Hg_{2}^{2+}, and Pb^{2+}
Sulfates (SO_{4}^{2-})	Sulfates of $\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Hg}_{2}^{2+}$, and Pb^{2+}
Insoluble Compounds	Soluble Exceptions
Carbonates $\left(\mathrm{CO}_{3}^{2-}\right)$, phosphates $\left(\mathrm{PO}_{4}^{3-}\right)$, chromates $\left(\mathrm{CrO}_{4}^{2-}\right)$, sulfides $\left(\mathrm{S}^{2-}\right)$	Compounds containing alkali metal ions and the ammonium ion
Hydroxides (OH^{-})	Compounds containing alkali metal ions and the Ba^{2+} ion

Writing Net Ionic Equations

1. Write the balanced molecular equation.
2. Write the ionic equation showing the strong electrolytes completely dissociated into cations and anions.
3. Cancel the spectator ions on both sides of the ionic equation
4. Check that charges and number of atoms are balanced in the net ionic equation

Write the net ionic equation for the reaction of silver nitrate with sodium chloride.
$\mathrm{AgNO}_{3}(a q)+\mathrm{NaCl}(a q) \longrightarrow \mathrm{AgCl}(s)+\mathrm{NaNO}_{3}(a q)$

$$
\begin{gathered}
\mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-}+\mathrm{Na}^{+}+\mathrm{Cl} \longrightarrow \mathrm{AgCl}(s)+\mathrm{Na}^{-}+\mathrm{NO}_{3}^{-} \\
\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl}(s)
\end{gathered}
$$

Properties of Acids

Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid.

Cause color changes in plant dyes.
React with certain metals to produce hydrogen gas.

$$
2 \mathrm{HCl}(a q)+\mathrm{Mg}(s) \longrightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2}(g)
$$

React with carbonates and bicarbonates to produce carbon dioxide gas

$$
2 \mathrm{HCl}(a q)+\mathrm{CaCO}_{3}(s) \longrightarrow \mathrm{CaCl}_{2}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(I)
$$

Aqueous acid solutions conduct electricity.

Properties of Bases

Have a bitter taste.
Feel slippery. Many soaps contain bases.
Cause color changes in plant dyes.
Aqueous base solutions conduct electricity.

Examples:

NH_{3}

OH^{-}

Arrhenius base is a substance that produces OH^{-}in water

Hydronium ion, hydrated proton, $\mathrm{H}_{3} \mathrm{O}^{+}$

A Brønsted acid is a proton donor

A Brønsted base is a proton acceptor

A Brønsted acid must contain at least one ionizable proton!

Monoprotic acids

$\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \quad$ Strong electrolyte, strong acid
$\mathrm{HNO}_{3} \longrightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}$
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftarrows \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
Strong electrolyte, strong acid
Weak electrolyte, weak acid

Diprotic acids

$\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-} \quad$ Strong electrolyte, strong acid
$\mathrm{HSO}_{4}^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-} \quad$ Weak electrolyte, weak acid

Triprotic acids

$\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftarrows \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	Weak electrolyte, weak acid
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{HPO}_{4}{ }^{2-}$	Weak electrolyte, weak acid
$\mathrm{HPO}_{4}{ }^{2-} \rightleftarrows \mathrm{H}^{+}+\mathrm{PO}_{4}^{3-}$	Weak electrolyte, weak acid

Identify each of the following species as a Brønsted acid, base, or both. (a) HI , (b) $\mathrm{CH}_{3} \mathrm{COO}^{-}$, (c) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

$$
\begin{aligned}
& \mathrm{HI}(\mathrm{aq}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \quad \mathrm{Br} n \text { nsted acid } \\
& \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightleftarrows \mathrm{CH}_{3} \mathrm{COOH}(a q) \quad \text { Brønsted base } \\
& \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}^{2-}(\mathrm{aq}) \quad \text { Brønsted acid } \\
& \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightleftarrows \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \quad \text { Brønsted base }
\end{aligned}
$$

$$
\begin{gathered}
\text { Neutralization Reaction } \\
\text { acid }+ \text { base } \longrightarrow \text { salt + water } \\
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}^{+}+\mathrm{CF}^{-}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{Na}^{\mp}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Neutralization Reaction Involving a Weak Electrolyte

$$
\begin{aligned}
\text { weak acid }+ \text { base } & \longrightarrow \text { salt + water } \\
\mathrm{HCN}(a q)+\mathrm{NaOH}(a q) & \longrightarrow \mathrm{NaCN}(a q)+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{HCN}+\mathrm{Na}^{+}+\mathrm{OH}^{-} & \longrightarrow \mathrm{Na}^{+}+\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{HCN}+\mathrm{OH}^{-} & \longrightarrow \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Neutralization Reaction Producing a Gas

$$
\begin{aligned}
& \text { acid }+ \text { base } \longrightarrow \text { salt + water }+\mathrm{CO}_{2} \\
& 2 \mathrm{HCl}(a q)+\mathrm{Na}_{2} \mathrm{CO}_{3}(a q) \longrightarrow 2 \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\
& 2 \mathrm{H}^{+}+2 \mathrm{CK}+2 \mathrm{Na}^{+}+\mathrm{CO}_{3}^{2-} \longrightarrow 2 \mathrm{Na}^{*}+2 \mathrm{CF}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\
& 2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
\end{aligned}
$$

$\mathrm{Zn}(s)+\mathrm{CuSO}_{4}(a q) \longrightarrow \mathrm{ZnSO}_{4}(a q)+\mathrm{Cu}(s)$
$\mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \quad \mathrm{Zn}$ is oxidized Zn is the reducing agent
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu} \mathrm{Cu}{ }^{2+}$ is reduced Cu^{2+} is the oxidizing agent

Copper wire reacts with silver nitrate to form silver metal. What is the oxidizing agent in the reaction?
$\mathrm{Cu}(s)+2 \mathrm{AgNO}_{3}(a q) \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{Ag}(s)$
$\mathrm{Cu} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$
$\mathrm{Ag}^{+}+1 \mathrm{e}^{-} \longrightarrow \mathrm{Ag} \quad \mathrm{Ag}^{+}$is reduced $\quad \mathrm{Ag}^{+}$is the oxidizing agent

Oxidation number

The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

1. Free elements (uncombined state) have an oxidation number of zero.

$$
\mathrm{Na}, \mathrm{Be}, \mathrm{~K}, \mathrm{~Pb}, \mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{P}_{4}=0
$$

2. In monatomic ions, the oxidation number is equal to the charge on the ion.

$$
\mathrm{Li}^{+}, \mathrm{Li}=+1 ; \mathrm{Fe}^{3+}, \mathrm{Fe}=+3 ; \quad \mathrm{O}^{2-}, \mathrm{O}=-2
$$

3. The oxidation number of oxygen is usually -2. In $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{O}_{2}{ }^{2-}$ it is -1 .
4. The oxidation number of hydrogen is +1 except when it is bonded to metals in binary compounds. In these cases, its oxidation number is -1 .
5. Group IA metals are +1 , IIA metals are +2 and fluorine is always -1 .
6. The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion.
7. Oxidation numbers do not have to be integers.

Oxidation number of oxygen in the superoxide ion, $\mathrm{O}_{2}{ }^{-}$, is $-1 / 2$.

$$
\mathrm{HCO}_{3}^{-}
$$

What are the oxidation numbers

$$
\begin{gathered}
\mathrm{O}=-2 \quad \mathrm{H}=+1 \\
3 \times(-2)+1+?=-1 \\
\mathrm{C}=+4
\end{gathered}
$$

The Oxidation Numbers of Elements in their Compounds

Types of Oxidation-Reduction Reactions

Combination Reaction

Decomposition Reaction

$$
C \longrightarrow A+B
$$

$$
\stackrel{+1+5-2}{2 \mathrm{KClO}_{3}} \longrightarrow \stackrel{+1-1}{2 \mathrm{KCl}}+3 \stackrel{0}{\mathrm{O}_{2}}
$$

Types of Oxidation-Reduction Reactions

Combustion Reaction

$$
\mathrm{A}+\mathrm{O}_{2} \longrightarrow \mathrm{~B}
$$

$$
\stackrel{0}{\mathrm{~S}}+\stackrel{0}{\mathrm{O}}_{2} \longrightarrow \stackrel{+4-2}{\mathrm{SO}_{2}}
$$

$$
\stackrel{0}{2 \mathrm{Mg}}+\stackrel{0}{\mathrm{O}_{2}} \longrightarrow \stackrel{+2}{\mathrm{M} g \mathrm{O}}
$$

Types of Oxidation-Reduction Reactions

Displacement Reaction

$$
\begin{aligned}
& A+B C \longrightarrow A C+B \\
& \stackrel{0}{\mathrm{Sr}}+2{\stackrel{+1}{\mathrm{H}} \mathrm{H}_{2} \mathrm{O} \longrightarrow \stackrel{+2}{\mathrm{~S}}(\mathrm{OH})_{2}+\stackrel{0}{\mathrm{H}}}_{2} \text { Hydrogen Displacement } \\
& \stackrel{+4}{\mathrm{TiCl}_{4}}+2 \stackrel{0}{\mathrm{Mg}} \longrightarrow \stackrel{0}{\mathrm{Ti}}+2 \stackrel{+2}{\mathrm{Mg}} \mathrm{CCl}_{2} \quad \text { Metal Displacement } \\
& \stackrel{0}{\mathrm{Cl}} \mathrm{I}_{2}+2 \mathrm{~KB} \mathrm{Br}^{-1} \longrightarrow 2 \mathrm{~K} \mathrm{Cl}^{-1}+\stackrel{0}{\mathrm{Br}}_{2} \quad \text { Halogen Displacement }
\end{aligned}
$$

The Activity Series for Metals

Hydrogen Displacement Reaction $M+B C \longrightarrow M C+B$

M is metal
$B C$ is acid or $\mathrm{H}_{2} \mathrm{O}$
B is H_{2}
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$ $\xrightarrow{\mathrm{Pb}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Pb}(\mathrm{OH})_{2}+\mathrm{H}_{2}}$

The Activity Series for Halogens

$$
\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}
$$

Halogen Displacement Reaction

Classify each of the following reactions.
$\mathrm{Ca}^{2+}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{CaCO}_{3} \quad$ Precipitation
$\mathrm{NH}_{3}+\mathrm{H}^{+} \longrightarrow \mathrm{NH}_{4}^{+} \quad$ Acid-Base
$\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \quad$ Redox $\left(\mathrm{H}_{2}\right.$ Displacement $)$
$\mathrm{Ca}+\mathrm{F}_{2} \longrightarrow \mathrm{CaF}_{2} \quad$ Redox (Combination)

Solution Stoichiometry

The concentration of a solution is the amount of solute present in a given quantity of solvent or solution.

$$
M=\text { molarity }=\frac{\text { moles of solute }}{\text { liters of solution }}
$$

What mass of KI is required to make 500 mL of a 2.80 M KI solution?
volume of KI solution $\xrightarrow{M \mathrm{KI}}$ moles $\mathrm{KI} \xrightarrow{\mathcal{M} \mathrm{KI}}$ grams KI

$$
\text { 500. } n \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{2.80 \mathrm{~mol} \mathrm{KI}}{1 \text { Soln }} \times \frac{166 \mathrm{~g} \mathrm{KI}}{1 \mathrm{~mol} \mathrm{KI}}=232 \mathrm{~g} \mathrm{KI}
$$

Dilution is the procedure for preparing a less concentrated solution from a more concentrated solution.

How would you prepare 60.0 mL of $0.200 \mathrm{M} \mathrm{HNO}_{3}$ from a stock solution of $4.00 \mathrm{M} \mathrm{HNO}_{3}$?

$$
M_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=M_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}
$$

$M_{\mathrm{i}}=4.00 \mathrm{M} \quad M_{\mathrm{f}}=0.200 \mathrm{M} \quad \mathrm{V}_{\mathrm{f}}=0.0600 \mathrm{~L} \quad \mathrm{~V}_{\mathrm{i}}=$? L
$\mathrm{V}_{\mathrm{i}}=\frac{M_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}}{M_{\mathrm{i}}}=\frac{0.200 \mathrm{M} \times 0.0600 \mathrm{~L}}{4.00 \mathrm{M}}=0.00300 \mathrm{~L}=3.00 \mathrm{~mL}$

Dilute 3.00 mL of acid with water to a total volume of 60.0 mL .

Gravimetric Analysis

1. Dissolve unknown substance in water
2. React unknown with known substance to form a precipitate
3. Filter and dry precipitate
4. Weigh precipitate
5. Use chemical formula and mass of precipitate to determine amount of unknown ion

Titrations

In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete.

Equivalence point - the point at which the reaction is complete
Indicator - substance that changes color at (or near) the equivalence point

Slowly add base to unknown acid UNTIL
the indicator changes color

Titrations can be used in the analysis of

Acid-base reactions

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

Redox reactions

$$
5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}
$$

What volume of a 1.420 M NaOH solution is required to titrate 25.00 mL of a $4.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

WRITE THE CHEMICAL EQUATION!

volume acid $\xrightarrow[\text { acid }]{M}$ moles red $\xrightarrow[\text { coef. }]{\text { rxn }}$ moles base $\xrightarrow[\text { base }]{M}$ volume base
$25.00-\mathrm{mLL} \times \frac{4.50 \mathrm{mal}_{\mathrm{H}} \mathrm{SO}_{4}}{1000 \mathrm{~mL} \mathrm{moli}^{2}} \times \frac{2 \mathrm{molNaOH}}{1 \mathrm{molH}_{2} \mathrm{SO}_{4}} \times \frac{1000 \mathrm{ml} \mathrm{soln}}{1.420 \mathrm{~mol} \mathrm{NaOH}}=158 \mathrm{~mL}$
16.42 mL of $0.1327 \mathrm{M} \mathrm{KMnO}_{4}$ solution is needed to oxidize 25.00 mL of an acidic FeSO_{4} solution. What is the molarity of the iron solution?

