

Elements that exist as gases at $25^{\circ} \mathrm{C}$ and 1 atmosphere

TABLE 5.1 Some Substances Found as Gases at 1 atm and $25^{\circ} \mathrm{C}$

Elements	Compounds
H_{2} (molecular hydrogen)	HF (hydrogen fluoride)
N_{2} (molecular nitrogen)	HCl (hydrogen chloride)
O_{2} (molecular oxygen)	HBr (hydrogen bromide)
O_{3} (ozone)	HI (hydrogen iodide)
F_{2} (molecular fluorine)	CO (carbon monoxide)
Cl_{2} (molecular chlorine)	CO_{2} (carbon dioxide)
He (helium)	NH_{3} (ammonia)
Ne (neon)	$\mathrm{NO}^{\text {(nitric oxide) }}$
Ar (argon)	NO_{2} (nitrogen dioxide)
Kr (krypton)	$\mathrm{N}_{2} \mathrm{O}$ (nitrous oxide)
Xe (xenon)	SO_{2} (sulfur dioxide)
Rn (radon)	$\mathrm{H}_{2} \mathrm{~S}$ (hydrogen sulfide)
	$\mathrm{HCN}^{\text {(hydrogen cyanide)* }}$

*The boiling point of HCN is $26^{\circ} \mathrm{C}$, but it is close enough to qualify as a gas at ordinary atmospheric conditions.

Physical Characteristics of Gases

- Gases assume the volume and shape of their containers.
- Gases are the most compressible state of matter.
- Gases will mix evenly and completely when confined to the same container.
- Gases have much lower densities than liquids and solids.

Pressure $=\frac{\text { Force }}{\text { Area }}$

(force $=$ mass \times acceleration)

Units of Pressure

1 pascal (Pa) = $1 \mathrm{~N} / \mathrm{m}^{2}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}=760$ torr
$1 \mathrm{~atm}=101,325 \mathrm{~Pa}$

Atmospheric pressure

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

As $P(\mathrm{~h})$ increases
V decreases

A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg . What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL ?

$$
\begin{gathered}
P \times V=\text { constant } \\
P_{1} \times V_{1}=P_{2} \times V_{2} \\
P_{1}=726 \mathrm{mmHg} \quad P_{2}=? \\
V_{1}=946 \mathrm{~mL} \quad V_{2}=154 \mathrm{~mL}
\end{gathered}
$$

$$
P_{2}=\frac{P_{1} \times V_{1}}{V_{2}}=\frac{726 \mathrm{mmHg} \times 946 \mathrm{mt}}{154 \mathrm{~m} t}=4460 \mathrm{mmHg}
$$

A sample of carbon monoxide gas occupies 3.20 L at $125^{\circ} \mathrm{C}$. At what temperature will the gas occupy a volume of 1.54 L if the pressure remains constant?

$$
\begin{gathered}
V_{1} / T_{1}=V_{2} / T_{2} \\
V_{1}=3.20 \mathrm{~L} \quad V_{2}=1.54 \mathrm{~L} \\
T_{1}=398.15 \mathrm{~K} \quad T_{2}=? \\
T_{1}=125\left({ }^{\circ} \mathrm{C}\right)+273.15(\mathrm{~K})=398.15 \mathrm{~K} \\
T_{2}=\frac{V_{2} \times T_{1}}{V_{1}}=\frac{1.54 \mathrm{~L} \times 398.15 \mathrm{~K}}{3.20 \mathrm{~L}}=192 \mathrm{~K}
\end{gathered}
$$

Avogadro' s Law

$V \propto$ number of moles (n)
$V=$ constant $\mathrm{x} n$

$$
V_{1} / n_{1}=V_{2} / n_{2}
$$

Ammonia burns in oxygen to form nitric oxide (NO) and water vapor. How many volumes of NO are obtained from one volume of ammonia at the same temperature and pressure?

$$
\begin{gathered}
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \\
1 \text { mole } \mathrm{NH}_{3} \longrightarrow 1 \text { mole } \mathrm{NO} \\
\text { At constant } T \text { and } P \\
1 \text { volume } \mathrm{NH}_{3} \longrightarrow 1 \text { volume } \mathrm{NO}
\end{gathered}
$$

Summary of Gas Laws

Boyle' s Law

Increasing or decreasing the volume of a gas at a constant temperature

$$
P=(n R T) \frac{1}{V} \quad n R T \text { is constant }
$$

Charles Law

Heating or cooling a gas at constant pressure

Heating or cooling a gas at constant volume

Avogadro's Law

Dependence of volume on amount
of gas at constant temperature and prese

Ideal Gas Equation

Boyle' s law: $\mathrm{P} \propto \frac{1}{V} \quad$ (at constant n and T)
Charles' law: $V \propto T$ (at constant n and P)
Avogadro's law: $V \propto n$ (at constant P and T)
$V \propto \frac{n T}{P}$
$V=$ constant $\mathrm{x} \frac{n T}{P}=R \frac{n T}{P} \quad R$ is the gas constant

$$
P V=n R T
$$

The conditions $0{ }^{\circ} \mathrm{C}$ and 1 atm are called standard temperature and pressure (STP).

Experiments show that at STP, 1 mole of an ideal gas occupies 22.414 L.

$$
P V=n R T
$$

$R=\frac{P V}{n T}=\frac{(1 \mathrm{~atm})(22.414 \mathrm{~L})}{(1 \mathrm{~mol})(273.15 \mathrm{~K})}$
$R=0.082057 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{K})$

What is the volume (in liters) occupied by 49.8 g of HCl at STP?

$$
T=0^{\circ} \mathrm{C}=273.15 \mathrm{~K}
$$

$$
P=1 \mathrm{~atm}
$$

$P V=n R T$
$n=49.8 \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.45 \mathrm{~g} \mathrm{HCl}}=1.37 \mathrm{~mol}$
$V=\frac{1.37 \text { mol } \times 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{mot} \cdot \mathrm{K}} \times 273.15 \mathrm{~K}}{1 \mathrm{~atm}}$
$V=30.7 \mathrm{~L}$

Density (d) Calculations

$$
d=\frac{m}{V}=\frac{P \mathcal{M}}{R T} \quad \begin{aligned}
& m \text { is the mass of the gas in } \mathrm{g} \\
& \mathcal{M} \text { is the molar mass of the gas }
\end{aligned}
$$

Molar Mass (\mathcal{M}) of a Gaseous Substance $\mathcal{M}=\frac{d R T}{P} \quad d$ is the density of the gas in g / L

A 2.10-L vessel contains 4.65 g of a gas at 1.00 atm and 27.0 ${ }^{\circ} \mathrm{C}$. What is the molar mass of the gas?

$$
\begin{gathered}
\mathcal{M}=\frac{d R T}{P} \quad d=\frac{m}{V}=\frac{4.65 \mathrm{~g}}{2.10 \mathrm{~L}}=2.21 \frac{\mathrm{~g}}{\mathrm{~L}} \\
\mathcal{M}=\frac{2.21 \frac{\mathrm{~g}}{\mathrm{~L}} \times 0.0821 \frac{\mathrm{~K} \mathrm{Katm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 300.15 \mathrm{~K}}{1 \mathrm{~atm}}
\end{gathered}
$$

$$
\mathcal{M}=54.5 \mathrm{~g} / \mathrm{mol}
$$

What is the volume of CO_{2} produced at $37{ }^{\circ} \mathrm{C}$ and 1.00 atm when 5.60 g of glucose are used up in the reaction:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \longrightarrow 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

$\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow \mathrm{~mol} \mathrm{CO}_{2} \longrightarrow V \mathrm{CO}_{2}$ $5.60 \mathrm{gG}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{1 \mathrm{mot}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180 \mathrm{~g} \mathrm{G}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{6 \mathrm{~mol} \mathrm{co}}{2} 12 \mathrm{mot}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad=0.187 \mathrm{~mol} \mathrm{CO}_{2}$

Consider a case in which two gases, A and B, are in a container of volume V .

$$
\begin{array}{ll}
P_{\mathrm{A}}=\frac{n_{A} \mathrm{RT}}{V} & n_{\mathrm{A}} \text { is the number of moles of } \mathrm{A} \\
P_{\mathrm{B}}=\frac{n_{B} \mathrm{RT}}{V} & n_{\mathrm{B}} \text { is the number of moles of } \mathrm{B} \\
P_{\mathrm{T}}=P_{\mathrm{A}}+P_{\mathrm{B}} & X_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \quad X_{\mathrm{B}}=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \\
P_{\mathrm{A}}=X_{\mathrm{A}} P_{\mathrm{T}} & P_{\mathrm{B}}=X_{\mathrm{B}} P_{\mathrm{T}}
\end{array}
$$

$$
P_{i}=X_{i} P_{\mathrm{T}} \quad \text { mole fraction }\left(X_{i}\right)=\frac{n_{i}}{n_{T}}
$$

A sample of natural gas contains 8.24 moles of $\mathrm{CH}_{4}, 0.421$ moles of $\mathrm{C}_{2} \mathrm{H}_{6}$, and 0.116 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$. If the total pressure of the gases is 1.37 atm , what is the partial pressure of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$?

$$
\begin{aligned}
& P_{i}=X_{i} P_{\mathrm{T}} \quad P_{\mathrm{T}}=1.37 \mathrm{~atm} \\
& X_{\text {propane }}=\frac{0.116}{8.24+0.421+0.116}=0.0132 \\
& P_{\text {propane }}=0.0132 \times 1.37 \mathrm{~atm}=0.0181 \mathrm{~atm}
\end{aligned}
$$

Kinetic Molecular Theory of Gases

1. A gas is composed of molecules that are separated from each other by distances far greater than their own dimensions. The molecules can be considered to be points; that is, they possess mass but have negligible volume.
2. Gas molecules are in constant motion in random directions, and they frequently collide with one another. Collisions among molecules are perfectly elastic.
3. Gas molecules exert neither attractive nor repulsive forces on one another.
4. The average kinetic energy of the molecules is proportional to the temperature of the gas in kelvins. Any two gases at the same temperature will have the same average kinetic energy

$$
\overline{\mathrm{KE}}=1 / 2 m \overline{u^{2}}
$$

Kinetic theory of gases and ...

- Compressibility of Gases
- Boyle's Law
$P \propto$ collision rate with wall
Collision rate \propto number density
Number density $\propto 1 / V$
$P \propto 1 / V$
- Charles' Law
$P \propto$ collision rate with wall
Collision rate \propto average kinetic energy of gas molecules Average kinetic energy $\propto T$
$P \propto T$

Kinetic theory of gases and ...

- Avogadro’s Law
$P \propto$ collision rate with wall
Collision rate \propto number density
Number density $\propto n$
$P \propto n$
- Dalton' s Law of Partial Pressures

Molecules do not attract or repel one another
P exerted by one type of molecule is unaffected by the presence of another gas
$P_{\text {total }}=\Sigma P_{\mathrm{i}}$

Gas diffusion is the gradual mixing of molecules of one gas with molecules of another by virtue of their kinetic properties.

$$
\frac{r_{1}}{r_{2}}=\sqrt{\frac{\mathcal{M}_{2}}{\mathcal{M}_{1}}}
$$

molecular path

Gas effusion is the is the process by which gas under pressure escapes from one compartment of a container to another by passing through a small opening.

$$
\frac{r_{1}}{r_{2}}=\frac{t_{2}}{t_{1}}=\sqrt{\frac{\mathcal{M}_{2}}{\mathcal{M}_{1}}}
$$

Nickel forms a gaseous compound of the formula $\mathrm{Ni}(\mathrm{CO})_{x}$ What is the value of x given that under the same conditions methane $\left(\mathrm{CH}_{4}\right)$ effuses 3.3 times faster than the compound?

$$
\begin{array}{ll}
\mathrm{r}_{1}=3.3 \times \mathrm{r}_{2} & \mathcal{M}_{2}=\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{2} \times \mathcal{M}_{1}=(3.3)^{2} \times 16=174.2 \\
\mathcal{M}_{1}=16 \mathrm{~g} / \mathrm{mol} & 58.7+x \cdot 28=174.2 \quad x=4.1 \sim 4
\end{array}
$$

Deviations from Ideal Behavior

1 mole of ideal gas

$$
\begin{gathered}
P V=n R T \\
n=\frac{P V}{R T}=1.0
\end{gathered}
$$

Effect of intermolecular forces on the pressure exerted by a gas.

Van der Waals equation	Table 5.3			
	van der Waals Constants of Some Common Gases			
	Gas	$\begin{gathered} a \\ \left(\frac{\mathrm{~atm} \cdot \mathrm{~L}^{2}}{\mathrm{~mol}^{2}}\right) \end{gathered}$	$\begin{gathered} b \\ \left(\frac{\mathrm{~L}}{\mathrm{~mol}}\right) \end{gathered}$	
nonideal gas	He	0.034	0.0237	
nonideal gas	Ne	0.211	0.0171	
	Ar	1.34	0.0322	
$\left(P+\frac{a n^{2}}{}\right)(V-n b)=n R T$	Kr	2.32	0.0398	
$\left(P+\frac{V^{2}}{}\right)(V-n b)=M R T$	Xe	4.19	0.0266	
-	H_{2}	0.244	0.0266	
corrected corrected	N_{2}	1.39	0.0391	
pressure volume	O_{2}	1.36	0.0318	
	Cl_{2}	6.49	0.0562	
	CO_{2}	3.59	0.0427	
	CH_{4}	2.25	0.0428	
	CCl_{4}	20.4	0.138	
	NH_{3}	4.17	0.0371	
	$\mathrm{H}_{2} \mathrm{O}$	5.46	0.0305	38

