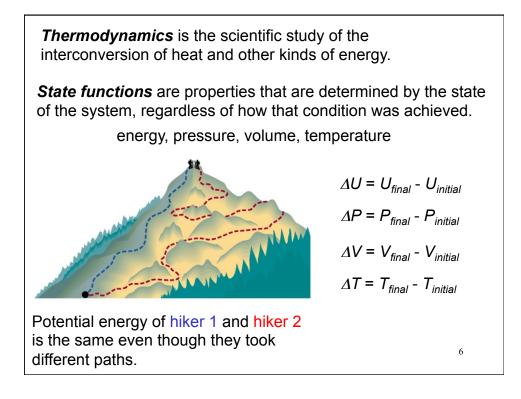


5

Exothermic process is any process that gives off heat – transfers thermal energy from the system to the surroundings.


 $2H_2(g) + O_2(g) \longrightarrow 2H_2O(l) + energy$

 $H_2O(g) \longrightarrow H_2O(l) + energy$

Endothermic process is any process in which heat has to be supplied to the system from the surroundings.

energy + $2HgO(s) \longrightarrow 2Hg(l) + O_2(g)$

energy + $H_2O(s) \longrightarrow H_2O(l)$

First law of thermodynamics – energy can be converted from one form to another, but cannot be created or destroyed.

$$\Delta U_{system} + \Delta U_{surroundings} = 0$$

or
$$\Delta U_{system} = -\Delta U_{surroundings}$$



 $C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$

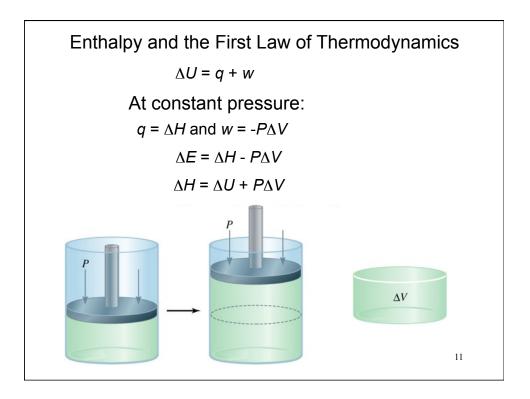
Exothermic chemical reaction!

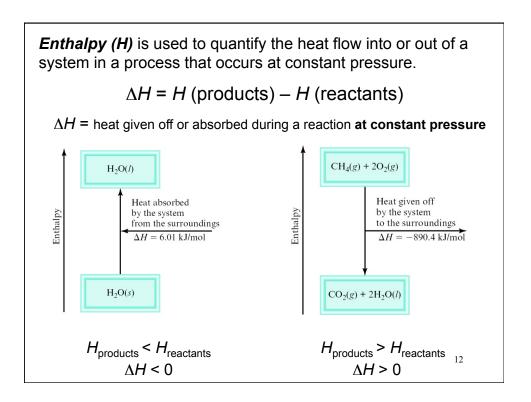
Chemical energy **lost** by combustion = Energy **gained** by the surroundings system surroundings

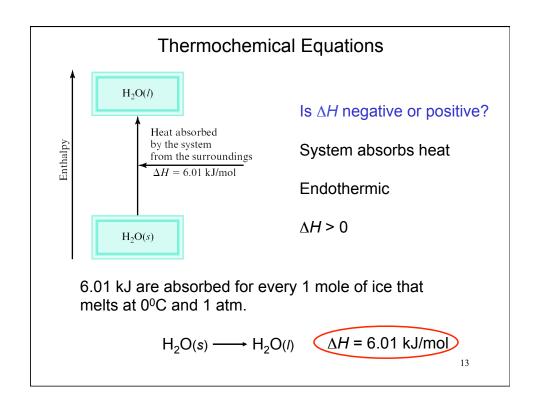
Another form of the <i>first law</i> for ΔU_{system}	
$\Delta U = q + w$	
ΔU is the change in internal energy of a system	
q is the heat exchange between the system and the surro	oundings
<i>w</i> is the work done on (or by) the system	
$w = -P\Delta V$ when a gas expands against a constant external	progettra
$w = r \Delta v$ when a gas expands against a constant external	pressure
TABLE 6.1 Sign Conventions for Work and Heat	pressure
	pressure Sign
TABLE 6.1 Sign Conventions for Work and Heat	
TABLE 6.1 Sign Conventions for Work and Heat Process	
TABLE 6.1 Sign Conventions for Work and Heat Process Work done by the system on the surroundings	Sign –
TABLE 6.1 Sign Conventions for Work and Heat Process Work done by the system on the surroundings Work done on the system by the surroundings	Sign - +

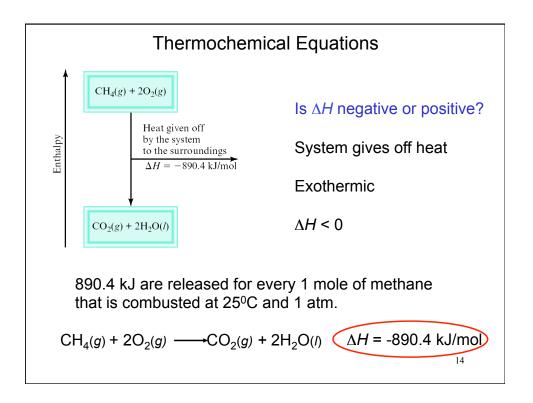
A sample of nitrogen gas expands in volume from 1.6 L to 5.4 L at constant temperature. What is the work done in joules if the gas expands (a) against a vacuum and (b) against a constant pressure of 3.7 atm? $w = -P\Delta V$

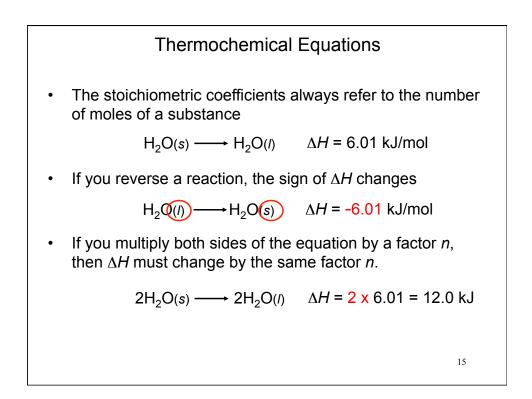
(a)
$$\Delta V = 5.4 \text{ L} - 1.6 \text{ L} = 3.8 \text{ L}$$
 $P = 0 \text{ atm}$

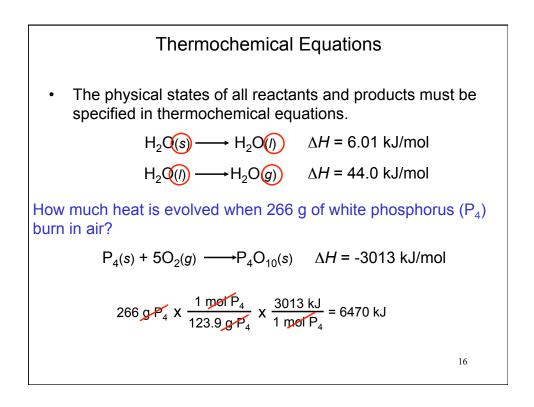

 $W = -0 \text{ atm } x 3.8 \text{ L} = 0 \text{ L} \cdot \text{atm} = 0 \text{ joules}$

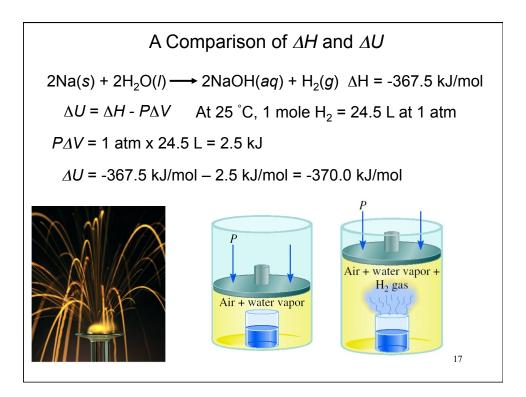

 $\Delta V = 5.4 L - 1.6 L = 3.8 L$ P = 3.7 atm (b)

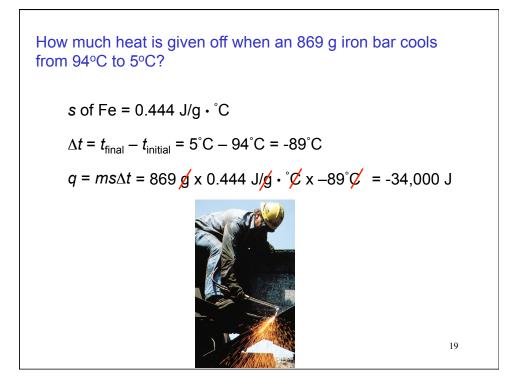

W

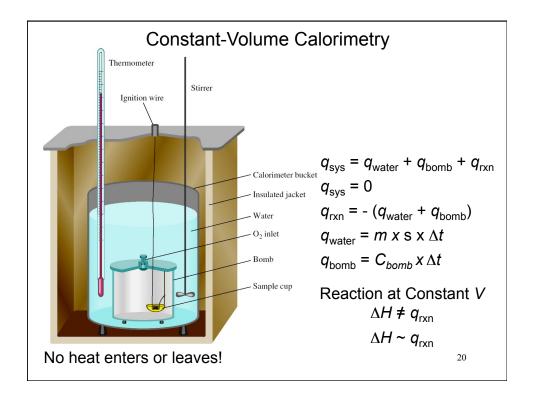

= -14.1 Leatm x
$$\frac{101.3 \text{ J}}{1\text{Leatm}}$$
 = -1430 J

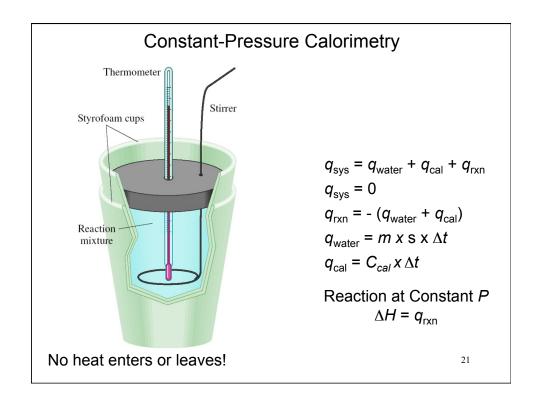

10










The **specific heat** (**s**) of a substance is the amount of heat (*q*) required to raise the temperature of **one gram** of the substance by **one degree** Celsius.

The *heat capacity* (C) of a substance is the amount of heat (q) required to raise the temperature of **a given quantity** (m) of the substance by **one degree** Celsius.

The Specific H of Some Comr Substances		$C = m \times s$
Substance	Specific Heat (J/g · °C)	Heat (q) absorbed or released
Al	0.900	$q = m \times s \times \Delta t$
Au	0.129	,
C (graphite)	0.720	$q = C \times \Delta t$
C (diamond)	0.502	9 0 / 2.
Cu	0.385	$\wedge t - t = t$
Fe	0.444	$\Delta t = t_{final} - t_{initial}$
Hg	0.139	
H_2O	4.184	18
C2H5OH (ethano	1) 2.46	10

Type of Reaction	Example	∆ <i>H</i> (kJ/mol
Heat of neutralization	$\operatorname{HCl}(aq) + \operatorname{NaOH}(aq) \longrightarrow \operatorname{NaCl}(aq) + \operatorname{H}_2\operatorname{O}(l)$	-56.2
Heat of ionization	$H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$	56.2
Heat of fusion	$H_2O(s) \longrightarrow H_2O(l)$	6.01
Heat of vaporization	$H_2O(l) \longrightarrow H_2O(g)$	44.0*
Heat of reaction	$MgCl_2(s) + 2Na(l) \longrightarrow 2NaCl(s) + Mg(s)$	-180.2
easured at 25°C. At 100°C, th	e value is 40.79 kJ.	
		22

Because there is no way to measure the absolute value of the enthalpy of a substance, must I measure the enthalpy change for every reaction of interest?

Establish an arbitrary scale with the **standard enthalpy of** formation $(\Delta H_{\rm f}^{\circ})$ as a reference point for all enthalpy expressions.

Standard enthalpy of formation (ΔH_{f}) is the heat change that results when **one mole** of a compound is formed from its **elements** at a pressure of 1 atm.

The standard enthalpy of formation of any element in its most stable form is zero. $\Delta H_{f}^{\circ}(C, graphite) = 0$

 $\Delta H_{f}^{\circ}(O_{2}) = 0$

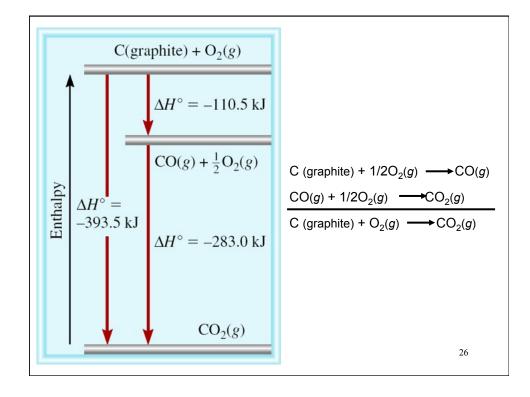
 $\Delta H_{f}^{\circ}(C, diamond) = 1.90 \text{ kJ/mol}$

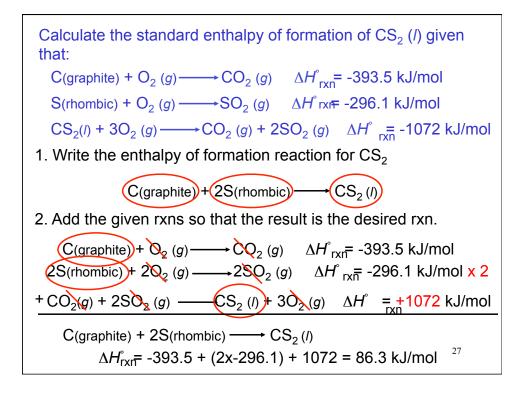
 $\Delta H_{f}^{\circ}(O_{3}) = 142 \text{ kJ/mol}$

	Substances at 25°C		
Substance	ΔH [°] _f (kJ/mol)	Substance	Δ <i>H</i> [°] _f (kJ/mol)
Ag(s)	0	$H_2O_2(l)$	-187.6
AgCl(s)	-127.0	Hg(l)	0
Al(s)	0	$I_2(s)$	0
$Al_2O_3(s)$	-1669.8	HI(g)	25.9
$Br_2(l)$	0	Mg(s)	0
HBr(g)	-36.2	MgO(s)	-601.8
C(graphite)	0	$MgCO_3(s)$	-1112.9
C(diamond)	1.90	$N_2(g)$	0
CO(g)	-110.5	$NH_3(g)$	-46.3
$CO_2(g)$	-393.5	NO(g)	90.4
Ca(s)	0	$NO_2(g)$	33.85
CaO(s)	-635.6	$N_2O(g)$	81.56
$CaCO_3(s)$	-1206.9	$N_2O_4(g)$	9.66
$Cl_2(g)$	0	O(g)	249.4
HCl(g)	-92.3	$O_2(g)$	0
Cu(s)	0	$O_3(g)$	142.2
CuO(s)	-155.2	S(rhombic)	0
$F_2(g)$	0	S(monoclinic)	0.30
HF(g)	-271.6	$SO_2(g)$	-296.1
H(g)	218.2	$SO_3(g)$	-395.2
$H_2(g)$	0	$H_2S(g)$	-20.15
$H_2O(g)$	-241.8	Zn(s)	0
$H_2O(l)$	-285.8	ZnO(s)	-348.0

The **standard enthalpy of reaction** (ΔH°_{rxn}) is the enthalpy of a reaction carried out at 1 atm.

 $aA + bB \longrightarrow cC + dD$


$$\Delta H_{rxn}^{\circ} = [c\Delta H_{f}^{\circ}(C) + d\Delta H_{f}^{\circ}(D)] - [a\Delta H_{f}^{\circ}(A) + b\Delta H_{f}^{\circ}(B)]$$


$$\Delta H_{rxn}^{\circ} = \Sigma n \Delta H_{f}^{\circ}$$
 (products) - $\Sigma m \Delta H_{f}^{\circ}$ (reactants)

Hess's Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.

(Enthalpy is a state function. It doesn't matter how you get there, only where you start and end.)

25

Benzene (C_6H_6) burns in air to produce carbon dioxide and liquid water. How much heat is released per mole of benzene combusted? The standard enthalpy of formation of benzene is 49.04 kJ/mol.

$$\begin{aligned} \widehat{2C_{6}H_{6}}(l) + 15O_{2}(g) &\longrightarrow 12CO_{2}(g) + 6H_{2}O(l) \\ \Delta H_{rxn}^{\circ} &= \Sigma n \Delta H_{f}^{\circ}(products) - \Sigma m \Delta H_{f}^{\circ}(reactants) \\ \Delta H_{rxn}^{\circ} &= [12\Delta H_{f}^{\circ}(CO_{2}) + 6\Delta H_{f}^{\circ}(H_{2}O)] - [2\Delta H_{f}^{\circ}(C_{6}H_{6})] \\ \Delta H_{rxn}^{\circ} &= [12x - 393.5 + 6x - 187.6] - [2x49.04] = -5946 \text{ kJ} \\ \frac{-5946 \text{ kJ}}{2 \text{ mol}} &= -2973 \text{ kJ/mol } C_{6}H_{6} \end{aligned}$$