

Wavelength (λ) is the distance between identical points on successive waves.
Amplitude is the vertical distance from the midline of a wave to the peak or trough.
Frequency (v) is the number of waves that pass through a particular point in 1 second ($\mathrm{Hz}=1$ cycle/s).

The speed (u) of the wave $=\lambda \times v \quad 2$

Maxwell (1873), proposed that visible light consists of electromagnetic waves.

Electromagnetic

 radiation is the emission and transmission of energy in the form of electromagnetic waves.Speed of light (c) in vacuum $=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
All electromagnetic radiation
$\lambda \times v=c$

A photon has a frequency of $6.0 \times 10^{4} \mathrm{~Hz}$. Convert this frequency into wavelength (nm). Does this frequency fall in the visible region?

$\lambda \mathrm{x} v=c$
$\lambda=c / v$

$\lambda=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} / 6.0 \times 10^{4} \mathrm{~Hz}$
Radio waves
$\lambda=5.0 \times 10^{3} \mathrm{~m}$
$\lambda=5.0 \times 10^{12} \mathrm{~nm}$

Mystery \#1, "Heated Solids Problem" Solved by Planck in 1900

When solids are heated, they emit electromagnetic radiation over a wide range of wavelengths.

Radiant energy emitted by an object at a certain temperature depends on its wavelength.

Energy (light) is emitted or absorbed in discrete units (quantum).

$$
\begin{array}{|l|}
\hline E=h \times v \\
\text { Planck's constant }(h) \\
h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
\hline
\end{array}
$$

Mystery \#2, "Photoelectric Effecty Solved by Einstein in 1905

Light has both:

1. wave nature
2. particle nature

Photon is a "particle" of light

$$
\begin{aligned}
& h v=\mathrm{KE}+W \\
& \mathrm{KE}=h v-W
\end{aligned}
$$

where W is the work function and depends how strongly electrons are held in the metal

When copper is bombarded with high-energy electrons, X rays are emitted. Calculate the energy (in joules) associated with the photons if the wavelength of the X rays is 0.154 nm .

$$
\begin{aligned}
& E=h \times v \\
& E=h \times c / \lambda \\
& E=6.63 \times 10^{-34}(\mathrm{~J} \cdot \mathrm{~s}) \times 3.00 \times 10^{8}(\text { (ph } / \mathrm{s}) / 0.154 \times 10^{-9}(\text { (nf }) \\
& E=1.29 \times 10^{-15} \mathrm{~J}
\end{aligned}
$$

Bohr's Model of the Atom (1913)

1. e^{-}can only have specific (quantized) energy values
2. light is emitted as e^{-} moves from one energy level to a lower energy level

$$
E_{n}=-R_{H}\left(\frac{1}{n^{2}}\right)
$$

n (principal quantum number) $=1,2,3, \ldots$
$R_{\mathrm{H}}($ Rydberg constant $)=2.18 \times 10^{-18} \mathrm{~J}$

TABLE 7.1 The Various Series in Atomic Hydrogen Emission Spectrum

Series	$\boldsymbol{n}_{\mathbf{f}}$	$\boldsymbol{n}_{\mathbf{i}}$	Spectrum Region
Lyman	1	$2,3,4, \ldots$	Ultraviolet
Balmer	2	$3,4,5, \ldots$	Visible and ultraviolet
Paschen	3	$4,5,6, \ldots$	Infrared
Brackett	4	$5,6,7, \ldots$	Infrared
		13	

Calculate the wavelength (in nm) of a photon emitted by a hydrogen atom when its electron drops from the $n=5$ state to the $n=3$ state .

$$
\begin{aligned}
E_{\text {photon }} & =\Delta E=R_{\mathrm{H}}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right) \\
E_{\text {photon }} & =2.18 \times 10^{-18} \mathrm{~J} \times(1 / 25-1 / 9) \\
E_{\text {photon }} & =\Delta E=-1.55 \times 10^{-19} \mathrm{~J} \\
E_{\text {photon }} & =h \times \mathrm{Cc} / \lambda \\
\lambda & =h \times c / E_{\text {photon }} \\
\lambda & =6.63 \times 10^{-34}\left(\delta^{\prime}(s) \times 3.00 \times 10^{8}(\mathrm{~m} / \mathrm{s}) / 1.55 \times 10^{-19} \mathrm{~J}\right. \\
\lambda & =1280 \mathrm{~nm}
\end{aligned}
$$

Why is e^{-}energy quantized?

De Broglie (1924) reasoned that e^{-}is both particle and wave.

$$
\begin{aligned}
& 2 \pi r=n \lambda \quad \lambda=\frac{h}{m u} \\
& u=\text { velocity of } e- \\
& m=\text { mass of } e-
\end{aligned}
$$

What is the de Broglie wavelength (in nm) associated with a 2.5 g Ping-Pong ball traveling at $15.6 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
& \lambda=h / m u \quad h \text { in J.s } m \text { in kg } u \text { in }(\mathrm{m} / \mathrm{s}) \\
& \lambda=6.63 \times 10^{-34} /\left(2.5 \times 10^{-3} \times 15.6\right) \\
& \lambda=1.7 \times 10^{-32} \mathrm{~m}=1.7 \times 10^{-23} \mathrm{~nm}
\end{aligned}
$$

Schrodinger Wave Equation

In 1926 Schrodinger wrote an equation that described both the particle and wave nature of the e^{-} Wave function (ψ) describes:

1. energy of e^{-}with a given ψ
2. probability of finding e^{-}in a volume of space

Schrodinger's equation can only be solved exactly for the hydrogen atom. Must approximate its solution for multi-electron systems.

Schrodinger Wave Equation

ψ is a function of four numbers called
quantum numbers ($n, I, m_{l}, m_{\mathrm{s}}$)
principal quantum number n
$n=1,2,3,4, \ldots$
distance of e^{-}from the nucleus

Schrodinger Wave Equation

quantum numbers: $\left(n, l, m_{l}, m_{s}\right)$
angular momentum quantum number / for a given value of $n, I=0,1,2,3, \ldots n-1$

$$
\begin{gathered}
n=1, l=0 \\
n=2, l=0 \text { or } 1 \\
n=3, l=0,1, \text { or } 2
\end{gathered}
$$

$$
\begin{array}{ll}
I=0 & s \text { orbital } \\
I=1 & p \text { orbital } \\
I=2 & d \text { orbital } \\
I=3 & f \text { orbital }
\end{array}
$$

Shape of the "volume" of space that the e^{-}occupies

Schrodinger Wave Equation quantum numbers: $\left(n, l, m_{l}, m_{s}\right)$

magnetic quantum number m_{l}
for a given value of I
$m_{l}=-l, \ldots ., 0, \ldots .+$
if $I=1$ (p orbital), $m_{l}=-1,0$, or 1
if $I=2$ (d orbital), $m_{l}=-2,-1,0,1$, or 2
orientation of the orbital in space

$$
m_{l}=-1,0, \text { or } 1
$$

3 orientations is space

Schrodinger Wave Equation

quantum numbers: $\left(n, l, m_{l}, m_{s}\right)$
Existence (and energy) of electron in atom is described by its unique wave function ψ.

Pauli exclusion principle - no two electrons in an atom can have the same four quantum numbers.

Each seat is uniquely identified ($\mathrm{E}, \mathrm{R} 12$, S8)
Each seat can hold only one individual at a time

Schrodinger Wave Equation quantum numbers: $\left(n, I, m_{l}, m_{s}\right)$

Shell - electrons with the same value of n

Subshell - electrons with the same values of n and $/$
Orbital - electrons with the same values of n, I, and m_{l}

How many electrons can an orbital hold?
If n, l, and m_{l} are fixed, then $m_{s}=1 / 2$ or $-1 / 2$

$$
\psi=\left(n, l, m_{l}, 1 / 2\right) \text { or } \psi=\left(n, I, m_{l},-1 / 2\right)
$$

An orbital can hold 2 electrons

How many $2 p$ orbitals are there in an atom?

How many electrons can be placed in the $3 d$ subshell?

$$
\begin{array}{cl}
n=3 & \text { If } I=2, \text { then } m_{l}=-2,-1,0,+1, \text { or }+2 \\
\vdots & \\
3 d & 5 \text { orbitals which can hold a total of } 10 \mathrm{e}^{-} \\
\dagger &
\end{array}
$$

Energy of orbitals in a single electron atom

Energy only depends on principal quantum number n

$$
\xlongequal{\begin{array}{l}
4 s-4 p---4 d-----4 f------- \\
3 s-3 p---3 d-----\quad \mathrm{n}=3 \\
2 s-2 p---\longleftarrow \mathrm{n}=2 \\
\frac{\mathrm{E}_{n}}{2}=-\mathrm{R}_{\mathrm{H}}\left(\frac{1}{n^{2}}\right) \\
1 s-\longleftarrow \mathrm{n}=1
\end{array}}
$$

Energy of orbitals in a multi-electron atom
Energy depends on n and I

"Fill up" electrons in lowest energy orbitals (Aufbau principle)

The most stable arrangement of electrons in subshells is the one with the greatest number of parallel spins (Hund's rule).

Order of orbitals (filling) in multi-electron atom

$$
1 s<2 s<2 p<3 s<3 p<4 s<3 d<4 p<5 s<4 d<5 p<6 s
$$

Electron configuration is how the electrons are distributed among the various atomic orbitals in an atom.

Orbital diagram
H

What is the electron configuration of Mg ?
Mg 12 electrons

$$
\begin{aligned}
& 1 s<2 s<2 p<3 s<3 p<4 s \\
& 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} \quad 2+2+6+2=12 \text { electrons } \\
& \text { Abbreviated as }[\mathrm{Ne}] 3 s^{2} \quad[\mathrm{Ne}] 1 s^{2} 2 s^{2} 2 p^{6}
\end{aligned}
$$

What are the possible quantum numbers for the last (outermost) electron in Cl ?

Cl 17 electrons $1 \mathrm{~s}<2 \mathrm{~s}<2 \mathrm{p}<3 \mathrm{~s}<3 \mathrm{p}<4 \mathrm{~s}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} \quad 2+2+6+2+5=17$ electrons
Last electron added to $3 p$ orbital

$$
\mathrm{n}=3 \quad l=1 \quad \mathrm{~m}_{l}=-1,0, \text { or }+1 \quad \mathrm{~m}_{\mathrm{s}}=1 / 2 \text { or }-1 / 237
$$

TABLE 7.3	The Ground-State Electron Configurations of the Elements*							
Atomic Number	Symbol	Electron Configuration	Atomic Number	Symbol	Electron Configuration	Atomic Number	Symbol	Electron Configuration
1	H	$1 s^{1}$	38	Sr	$[\mathrm{Kr}] 5 s^{2}$	75	Re	[Xe] $6 s^{2} 4 f^{\prime \prime} 5 d^{5}$
2	He	$1 s^{2}$	39	Y	$[\mathrm{Kr}] 5 s^{2} 4 d^{1}$	76	Os	[Xe] $6 s^{2} 4 f^{\prime \prime} 5 d^{6}$
3	Li	[He] $2 s^{1}$	40	Zr	$[\mathrm{Kr}] 5 s^{2} 4 d^{2}$	77	Ir	[Xe] $6 s^{2} 4 f^{14} 5 d^{7}$
4	Be	[He] $2 s^{2}$	41	Nb	$[\mathrm{Kr}] 5 s^{1} 4 d^{4}$	78	Pt	[Xe] $6 s^{1} 4 f^{14} 5 d^{9}$
5	B	[He] $2 s^{2} 2 p^{1}$	42	Mo	$[\mathrm{Kr}] 5 s^{1} 4 d^{5}$	79	Au	[Xe] $6 s^{1} 4 f^{14} 5 d^{10}$
6	C	[He] $2 s^{2} 2 p^{2}$	43	Tc	$[\mathrm{Kr}] 5 s^{2} 4 d^{5}$	80	Hg	[Xe] $6 s^{2} 4 f^{14} 5 d^{10}$
7	N	$[\mathrm{He}] 2 s^{2} 2 p^{3}$	44	Ru	[Kr] $5 s^{1} 4 d^{7}$	81	Tl	[Xe] $6 s^{2} 4 f^{14} 5 d^{10} 6 p^{1}$
8	O	[He] $2 s^{2} 2 p^{4}$	45	Rh	$[\mathrm{Kr}] 5 s^{1} 4 d^{8}$	82	Pb	[Xe] $6 s^{2} 4 f^{14} 5 d^{10} 6 p^{2}$
9	F	$[\mathrm{He}] 2 s^{2} 2 p^{5}$	46	Pd	$[\mathrm{Kr}] 4 d^{10}$	83	Bi	[Xe] $6 s^{2} 4 f^{14} 5 d^{10} 6 p^{3}$
10	Ne	$[\mathrm{He}] 2 s^{2} 2 p^{6}$	47	Ag	$[\mathrm{Kr}] 5 s^{1} 4 d^{10}$	84	Po	[Xe] $6 s^{2} 4 f^{14} 5 d^{10} 6 p^{4}$
11	Na	[Ne$] 3 s^{1}$	48	Cd	$[\mathrm{Kr}] 5 s^{2} 4 d^{10}$	85	At	[Xe] $6 s^{2} 4 f^{14} 5 d^{10} 6 p^{5}$
12	Mg	[Ne$] 3 s^{2}$	49	In	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{1}$	86	Rn	[Xe] $6 s^{2} 4 f^{14} 5 d^{10} 6 p^{6}$
13	Al	[Ne$] 3 s^{2} 3 p^{1}$	50	Sn	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{2}$	87	Fr	[Rn]7s ${ }^{1}$
14	Si	[Ne$] 3 s^{2} 3 p^{2}$	51	Sb	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{3}$	88	Ra	[Rn]7s ${ }^{2}$
15	P	[Ne$] 3 s^{2} 3 p^{3}$	52	Te	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{4}$	89	Ac	[Rn]7s ${ }^{2} 6 d^{1}$
16	S	[Ne$] 3 s^{2} 3 p^{4}$	53	I	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{5}$	90	Th	[Rn] $7 s^{2} 6 d^{2}$
17	Cl	[Ne$] 3 s^{2} 3 p^{5}$	54	Xe	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{6}$	91	Pa	[Rn] $7 s^{2} 5 f^{2} 6 d^{1}$
18	Ar	[Ne$] 3 s^{2} 3 p^{6}$	55	Cs	$[\mathrm{Xe}] 6{ }^{1}$	92	U	[Rn] $7 s^{2} 5 f^{3} 6 d^{1}$
19	K	$[\mathrm{Ar}] 4 \mathrm{~s}^{1}$	56	Ba	$[\mathrm{Xe}] 6{ }^{2}$	93	Np	[Rn] $7 s^{2} 5 f^{4} 6 d^{1}$
								39

