Lab You will need your [NaOH] for the next lab. Should be between $0.1 M-0.2 M$. $p V=n R T \quad$ ideal gas Constant

$$
\frac{p_{1} V_{1}}{n_{1} T_{1}}=R=\frac{p_{2} V_{2}}{n_{2} T_{2}}
$$

$n=\#$ mol gas
if \#mol gas is constant

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \text { Combined } \begin{gathered}
\text { Gas } \\
\text { Law. }
\end{gathered}
$$

CH_{4} gig

$$
\begin{aligned}
P_{1} & =17 \mathrm{~atm} \\
V_{1} & =3.7 \mathrm{~mL} \\
t_{1} & =-10 . \mathrm{C} \Rightarrow T_{1}=-10 .+273.1 \mathrm{~s} \\
\frac{P_{1} V_{1}}{T_{1}} & =\frac{P_{2} V_{2} ?}{T_{2}} \Rightarrow V_{2}=\frac{P_{1} V_{1}}{T_{1}} \times \frac{T_{2}}{P_{2}} \\
\Rightarrow V_{2} & =\frac{17 \mathrm{a} / \mathrm{m} \times 3.7 \mathrm{~mL} \times 283 \mathrm{~K}}{263 \mathrm{~K} \times 1.0 \mathrm{Kmm}} \\
& =68 \mathrm{~mL} \quad(\approx 20 \times \text { lace! })
\end{aligned}
$$

Gas Stoichiometry

- can, find volume of gases made in

$$
\text { ex: } \quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{sl}) \xrightarrow{y_{\text {east }}} 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{\text {(eq) }}+2 \mathrm{CO}_{2 \mathrm{gl}}
$$

let's calculate what vol. of CO_{2} is formed from 454 g of $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{6}$

$=5.04 \mathrm{~mol} \quad \mathrm{CO}_{2}(\mathrm{~g})$

$$
\begin{aligned}
& p V=n R T \Rightarrow V=\frac{n R T}{P} \\
& \Rightarrow V=\frac{5.04 \mathrm{mal} \times 0.08206 \frac{\text { mach } \mathrm{L}}{1.0290 . K}}{1.01 \mathrm{aba}} \\
& =119 \quad L
\end{aligned}
$$

N		əЈuełsqns snoəse9 e fo（W）ssew Iejow			\longleftarrow	$\begin{aligned} & 3 \\ & 11 \\ & \text { G } \\ & \text { G } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	S			

Section 5.4
density + molar mass of gases.
Section 5.5

Q. What's the pressure in the bor?

$$
\begin{aligned}
& p V=n R T \\
& \begin{aligned}
N_{2} & \Rightarrow p=\frac{n R T}{V} \\
P_{N_{2}} & =\frac{3.0 \text { m. } 1 \times 0.08206 \frac{\mathrm{ahov}}{\mathrm{mal} \cdot \mathrm{~K}} \times 310 \mathrm{~K}}{5.0 \mathrm{~K}} \\
& =15 \mathrm{atun}
\end{aligned}
\end{aligned}
$$

O_{2}

$$
\begin{aligned}
P_{O_{2}} & =1.0 \mathrm{mot} \times 0.08206 \frac{\mathrm{a} \text { ha k }}{} \times 310 \mathrm{~K} \\
& =5.1 \mathrm{atmo} \quad 5.0 \mathrm{~K}
\end{aligned}
$$

Dalton's law of Partial Pressures.

$$
P_{\text {TOT }}=\underbrace{P_{\text {pressures. }}+P_{2}+P_{3}+\ldots}_{\text {partial }}
$$

- pressure that each gas will exert BY ITSELF!

$$
P_{\text {TON }}=P_{\mathrm{N}_{2}}+P_{\mathrm{O}_{2}}=15 \mathrm{am}+5.1 \mathrm{a} \mathrm{hm}_{\mathrm{n}}=20 . \mathrm{atm}
$$

Mole Fractions

$$
\begin{aligned}
& x_{A}=\frac{n_{A}}{n_{\text {TOT }}} \\
& \text { ex: } \quad x_{N_{2}}=\frac{3.0 \mathrm{~mol}}{3.0_{\mathrm{mol}}+1.0 \mathrm{~mol}}=0.75 \\
& x_{\mathrm{O}_{2}}=\frac{1.0 \mathrm{~mol}}{4.0 \mathrm{~mol}}=0.25 \\
& 1=x_{A}+x_{B}+x_{C}+\ldots
\end{aligned}
$$

Kinetic Molecular Theory of Gases $\varlimsup_{\text {Movement }}^{\text {Pmall-particles }}$
gases: - molecules

- Constant random motion!
- Kinetic Energy \propto T(k) energy of motion
- Pressure

Not all molecules are moving a same speed. Maxwell-Boltzmann Distribution \#moleaches

