ARTS
Maxwell-Distribution Curve

\#moleculas

Ideal Gas Equation
Only works for IDEAC gases!

$$
\begin{aligned}
& p V=n R T \\
& \frac{p V}{n R T}=1
\end{aligned}
$$

Deviations from ideal behavior.

IDEAL GAS	REAL GAS
-no attractions between thu gas molecules.	-ave attractions between
molecules them slues move no volume	-real molecules have sire.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display
Table 5.3
van der Waal Constants of Some Common Gases

Gas	\boldsymbol{a} $\left(\frac{\mathbf{a t m} \cdot \mathbf{L}^{2}}{\mathbf{m o l}^{2}}\right)$	\boldsymbol{b} $\left(\frac{\mathbf{L}}{\mathbf{m o l}}\right)$
He	0.034	0.0237
Ne	0.211	0.0171
Ar	1.34	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0266
H_{2}	0.244	0.0266
$\mathrm{~N}_{2}$	1.39	0.0391
O_{2}	1.36	0.0318
Cl_{2}	6.49	0.0562
CO_{2}	3.59	0.0427
CH_{4}	2.25	0.0428
CCl_{4}	20.4	0.138
NH_{3}	4.17	0.0371
$\mathrm{H}_{2} \mathrm{O}$	5.46	0.0305

IDEAL

$$
\begin{aligned}
p V=n R T \Rightarrow p=\frac{n R T}{V} & =\frac{1.20 \mathrm{~mol} \cdot 0.08206 \frac{\mathrm{afn} \cdot \mathrm{~K}}{\mathrm{~m} \cdot \mathrm{~K}} \cdot \operatorname{si2} \mathrm{n}}{1.50 \mathrm{~K}} \\
& =25.1 \mathrm{~atm} .
\end{aligned}
$$

vdu $a=5.4 .6 \frac{\mathrm{ahan} \mathrm{L}^{2}}{\mathrm{~mol}^{2}} \quad b=0.0305 \mathrm{~h} / \mathrm{mol}$

$$
\frac{\left(p+\frac{a n^{2}}{V^{2}}\right)(v-n b)}{(y-n b)}=\frac{n R T}{(V a b)} \Rightarrow p+\frac{a n^{2}}{v^{2}}=\frac{n R T}{-\frac{n^{2}}{V^{2}}}=\frac{-\frac{a n^{2}}{V^{2}}}{V-n b}
$$

$$
\Rightarrow p=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}
$$

$=22.2 \mathrm{~atm}$
REAL pressure: 20.15 atm .
ided value: off by $\approx 25 \%$
vow : off by $\approx 10 \%$

Ch 6 Thermochemistry
Energy a more forms
a one form is hoot
were going to study hast gain/hass in chemical rams.

3 types of systems.
(1) OPEN heat+matter can flow syseosuen
(2) CLOSEs hat can flow, but not matter "
(3) ISOLATED Nothing can flow

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

(a)

(b)

(c)

More definitive...
if hat is lost (released, evolved, ...) from the system to the surrounding:

ExOTHERMIC

if heat is absorbed by the system from the surroundings:

Endothermic

$1^{\text {st }}$ Law of Thermodynamics

$$
\begin{aligned}
& E_{\text {system }}+E_{\text {surroundings }}=E_{\text {unncrse }} \\
& \Delta E_{\text {syst }}+\Delta E_{\text {surf }}=0
\end{aligned}
$$

energy can neither be created nor duatroynd.
Sign convention: if energy leaves.

$$
\Delta E=-v e
$$

if every enters.

$$
\Delta E=+v e
$$

if only form of energy is heat, then $1^{\text {st }}$ Law becomes:

$$
q_{\text {sys }}+q_{\text {sur }}=0
$$

ex: if the system loses 10 J of heat: $q_{\text {sys }}=-10 \mathrm{~J}$, then surroundings gain

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display
Table 6.1 Sign Conventions for Work and Heat
Process
Work done by the system on the surroundings
Work done on the system by the surroundings
Heat absorbed by the system from the surroundings (endothermic process)
Heat absorbed by the surroundings from the system (exothermic process)

103 of heat: $q_{\text {sur }}=+10 \mathrm{~J}$.

$$
\begin{aligned}
& q_{\text {sur r }}+q_{\text {sty }}=0 \\
& +10 \mathrm{~J}-10 \mathrm{~J}=0
\end{aligned}
$$

teat flows into deject, it inereaers it temperather, and vie-versa
How to measure q

- Calorimetry

Heat capacity $=$ heat reg id to increase
an objects tex by $1{ }^{\circ} \mathrm{C}$
(or 1 k$)$

$$
\Rightarrow q=C \cdot \Delta t
$$

A Gold crown with a heat capacity of 522% increases by $15^{\circ} \mathrm{C}$ in temperature, then how much heat does it absorb?

$$
\begin{aligned}
& q=C \cdot \Delta t \\
&=522 \mathrm{~J} / \mathrm{Q} x+15^{2} \mathrm{C} \\
&=7800 \mathrm{~J} \\
& 1 \text { Joule }=1 \mathrm{~J} \\
& \text { SI unit of energy } \\
& \text { (James Jove, w1750) }
\end{aligned}
$$

mid 1800s actually!

