Exam Ra
 Chem 1141
 Fall 2008

Name: \qquad
Multiple Choice. [2 pts ea.]
Q1. The atomic mass unit (amu) is defined as exactly equal to:
a) $1 / 12$ mass of an atom of $\mathrm{C}-12$
b) the mass of one atom of H-1
c) $1 / 16$ the mass of an atom of O-16
d) one gram per mole

Q2. The (average) atomic mass of chlorine is:
a) 12.01
b) 17
c) 18
d) 35
(c) 35.45

Q3. The molar mass of $\mathrm{H}_{2} \mathrm{O}$ (in $\mathrm{g} / \mathrm{mol}$) is:
a) 1.00
b) 16.00
c) 17.01
(d) 18.02
e) 21.03

Q4. The number of moles of H_{2} in a 3.40 g sample is:
a) 1.00
(b) 1.69
c) 3.40
d) 3.43
e) 6.85

Q5. A device used to weigh individual atom/molecules by measuring the deflection of a charged ion in a magnetic field:
a) pipes
b) mass spectrometer
c) titration
d) isotope
e) analytical balance

Q6. When the equation:

$$
-\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\underline{6} \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \underline{2} \mathrm{CO}_{2}(\mathrm{~g})+\underline{6} \mathrm{~N}_{2}(\mathrm{~g})+\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

is balanced using the lowest set of whole number coefficients, the number written in front of $\mathrm{N}_{2} \mathrm{O}$ is:
a) 1
b) 2
c) 4
d) 5
(e) 6

Q7. When the equation:

$$
\ldots \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\ldots \mathrm{N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

is balanced using the lowest set of whole number coefficients, the number written in front of CO_{2} is:
a) 1
(b) 2
c) 4
d) 5
e) 6

Q8. A substance that dissolves in water to form a solution than conducts electricity is called $\mathrm{a}(\mathrm{n})$:
(a) electrolyte
b) non-electrolyte
c) precipitate
d) molecule
e) conductor

Q9. The compound $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ is soluble in water:
(a) TRUE
b) FALSE

Q10. The compound $\mathrm{Fe}_{2} \mathrm{~S}_{3}$ is soluble in water:
a) TRUE
(b) FALSE

Q11. An acid is a substance that:
a) Forms OH^{-}ions when dissolved in water
b) Turns litmus blue
(c) Forms H^{+}ions when dissolved in water
d) Forms $\mathrm{NO}_{3}-$ ions when dissolved in water
e) Tastes bitter sulfur

Q12. The oxidation number of the oxygen atom in the ion: $\mathrm{SO}_{3}{ }^{2-}$ is:
a) +1
b) +2
c) +3
(d) +4
e) +5
f) +6

Q13. A substance that is oxidized:
a) Reacts with hydrogen
b) dissolves well in water
c) burns in air
d) gains electrons
(e) loses electrons

Q14. 100.0 mL of a solution that is 1.50 M HCl contains how many moles of HCl ?
a) 150
b) 15.0
c) 1.50
(d) 0.150
e) 0.0150

Q15. What volume of 2.0 M NaCl contains 0.10 mol NaCl ?
a) 20.0 L
b) 2.0 L
c) 0.20 L
d) 0.020 L
(e) 0.050 L

Q16. The molar concentration of a sample of NaOH that has 0.25 mol of NaOH in 125 mL of solution is:
a) 0.00200 M
b) 0.25 M
(c) 2.0 M
d) 31 M
e) 500 M

Q17. Water is added to a $10 . \mathrm{mL}$ sample of $15.0 \mathrm{M} \mathrm{HNO}_{3}$ until the final volume is $100 . \mathrm{mL}$. What is the molar concentration of the HNO_{3} ?
a) 0.015 M
b) 0.15 M
(c) 1.5 M
d) 15 M
e) 150 M

Q18. What type of equation is represented below:

$$
\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}-(\mathrm{aq})
$$

a) Net ionic
b) Full ionic
c) Molecular
d) Spectator
e) Redo

Short Response.

Show ALL work to receive credit. Use the conversion factor method for all problems to receive full credit.
Q19. [9 pts.] Bornite is an important copper mineral with the chemical formula $\mathrm{Cu}_{5} \mathrm{FeS}_{4}$. Its nickname is peacock copper due to its purple/bronze iridescent color. Calculate the percent composition by mass of each element in Bornite.

$$
\% C u=\frac{317.8}{502.0} \times 100 \%=63.31 \%
$$

$$
\% F_{e}=\frac{55.85}{502.0} \times 100 \%=11.13 \%
$$

$$
\% S=\frac{128.3}{502.0} \times 100 \%=25.56
$$

$$
\begin{aligned}
& 5 \times C u=5 \times 63.55=317.8 \\
& 1 \times \mathrm{Fe}=1 \times 55.85=55.85 \\
& 4 \times 5=4 \times 32.07=\frac{128.3}{501.95} \\
& =502.0
\end{aligned}
$$

Q20. [15 pts.] Write the balanced molecular, full-ionic, and net-ionic chemical equations for the reaction between aqueous hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$ and aqueous sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$. Be sure to include all state symbols and charges.
a) MOLECULAR

$$
2 \mathrm{HCl}_{(a q)}+\mathrm{Na}_{2} \mathrm{OO}_{3}(\mathrm{aq}) \longrightarrow 2 \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2}(\text { g) })
$$

b) FULL-IONIC

$$
2 \mathrm{H}_{(a q)}^{+}+2 \mathrm{Cl}_{\text {(aq) }}^{-}+2 \mathrm{Na}_{\text {cq }}^{+}+\left(\mathrm{O}_{3}^{2-}-2 \mathrm{Na}_{\text {aq q }}^{+}\right)+2 \mathrm{Cl}_{(\text {aq) }}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{CO}_{2(g)}
$$

c) NET-IONIC

$$
2 \mathrm{H}_{(a q)}^{+}+\mathrm{CO}_{3}^{2-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}_{4)}+\mathrm{CO}_{2}(g)
$$

Q21. [4 pts.] Name the following compounds:
i) CuCl Copper (1) chloride
ii) $\mathrm{N}_{7} \mathrm{~F}_{9}$ heptanitrogen nonafluoride
iii) KHCO_{3}
iv) FeCl_{2}
potassium bicarbonate
ivon(11) chloride

Q22. [4 pts.] Write formulas for the following compounds:
i) sodium phosphate

$$
\mathrm{Na}_{3} \mathrm{PO}_{4}
$$

ii) copper(II) nitrate

$$
\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}
$$

iii) trisulfur pentoxide

$$
\mathrm{S}_{3} \mathrm{O}_{5}
$$

iv) calcium sulfate pentahydrate

$$
\mathrm{CaSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}
$$

Q23. [16 pts.] Given the following unbalanced chemical equation:

$$
\left.\ldots \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{KOH}(\mathrm{aq}) \rightarrow \ldots \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+\right\} \mathrm{KNO}_{3}(\mathrm{aq})
$$

a) Balance the equation (Write in the coefficients)

$$
\begin{aligned}
& 1 \times A \mid=1 \times 26.98 \\
& 3 \times 0=3 \times 16.00 \\
& 3 \times H=\frac{3 \times 1.01}{78.01}
\end{aligned}
$$

b) Calculate the number of moles of $\mathrm{Al}(\mathrm{OH})_{3}$ that can be formed from the complete reaction of 0.40 mol KOH.

c) Predict the mass of $\mathrm{Al}(\mathrm{OH})_{3}$ that can be made from mixing 20.0 mL of $1.00 \mathrm{M} \mathrm{Al}_{\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq}) \text { and }}$ 15.0 mL of $1.60 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$.

$$
\begin{aligned}
& \begin{array}{l|l|c|l|l}
20.0 \mathrm{~mL} & 10^{-3} \mathrm{~L} & 1.00 \mathrm{~mol} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} & I_{\mathrm{mol} \mathrm{Al}(\mathrm{OH})_{3}} & 78.01 \mathrm{~g} \mathrm{Al(OH})_{3} \\
\hline \mathrm{~mL} & 1 \mathrm{C} & 1 \mathrm{~mol} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} & 1 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}
\end{array}=1.56 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 0.624 \mathrm{~g} A l(\mathrm{OH})_{3} \text { is formed. }
\end{aligned}
$$

d) If 0.402 g of $\mathrm{Al}(\mathrm{OH})_{3}$ are formed in the reaction described in part (c), then what is the percent yield?

$$
\% \text { yield }=\frac{0.402 \mathrm{~g}}{0.624 \mathrm{~g}} \times 100 \%=64.4 \%
$$

Q24. [16 pts.] How many moles do the following contain:
$\mathrm{CH}_{2} \mathrm{O}$

$$
\begin{aligned}
& 1 \times C=12.01 \\
& 2 \times H=2.02 \\
& 1+0=\frac{16.00}{30.03}
\end{aligned}
$$

NaCl

$$
\begin{aligned}
& 1+\mathrm{Na}_{a}=22.99 \\
& 1 . \mathrm{Cl}=\frac{35.45}{58.44}
\end{aligned}
$$

a) 4.50 g of $\mathrm{CH}_{2} \mathrm{O}$

$$
\frac{4.50 \mathrm{~g} \mathrm{CH}}{2} \left\lvert\, \frac{1 \mathrm{~mol} \mathrm{CH}_{2} \mathrm{O}}{30.03 \mathrm{~g} \mathrm{CH}_{2} \mathrm{O}}=0.150 \mathrm{~mol} \mathrm{CH}\right.
$$

b) 12.3 g of NaCl

$$
\frac{\left.12.3 \mathrm{~g} \mathrm{NaCl}\right|_{\text {mol }} ^{2.3 \mathrm{NaCl}}}{58.4 \mathrm{~g} \mathrm{NaCl}}=0.210 \mathrm{~mol} \mathrm{NaCl} \quad \text { (3rf.) }
$$

c) 22.0 mL of $0.331 \mathrm{M} \mathrm{MgCl}_{2}$

$$
\begin{array}{l|l}
22.0 \mathrm{~mL} & 10^{-3 \mathrm{~L}} \\
\mathrm{mc} & \frac{0.331 \mathrm{~mol} \mathrm{gga}}{1 \mathrm{c}}=0.00728 \mathrm{~mol} \mathrm{MgCl}
\end{array} \quad(35 . f .)
$$

d) 135 mL of $0.25 \mathrm{M} \mathrm{CH}_{2} \mathrm{O}$

$$
\begin{array}{l|l|l}
135 \mathrm{mLL} & 10^{-3 \mathrm{C}} & 0.2 \mathrm{Smol} \mathrm{CH}_{2} \mathrm{O} \\
\mathrm{~mL} & \mathrm{LL}
\end{array}=0.034 \mathrm{~mol} \mathrm{CH} \mathrm{O} \text { (2s.f.) }
$$

BONUS:
i) How many protons, neutrons, and electrons are there in an atom of sodium 24 ?

$$
\begin{aligned}
\left.\mathrm{Na}^{\prime \prime}\right] & z=\# p^{*}=\# e^{-}(\text {atoms }) \\
& \Rightarrow\left\|p^{+},\right\| e^{-}, 13 n^{\circ}
\end{aligned}
$$

ii) Convert a speed of $3.4 \mathrm{~nm} / \mathrm{ms}$ to units of $\mathrm{pm} / \mathrm{ns}$.

$$
\begin{aligned}
& n m=10^{-9} \mathrm{~m} \\
& m s=10^{-3} \mathrm{~s} \\
& p_{m}=10^{-12} \mathrm{~m} \\
& n s=10^{-9} \mathrm{~s}
\end{aligned}
$$

$$
\left.\begin{array}{l|l|l|l|l|}
3.4 \mathrm{~nm} & 10^{-9} \mathrm{~m} & \mathrm{~ms} & \mathrm{pm} & 10^{-9} \mathrm{~s} \\
\hline \mathrm{~ms} & \operatorname{nmx} & 10^{-3} \mathrm{~s} & 10^{-12} \mathrm{~m} / \mathrm{ns}
\end{array} \right\rvert\,=3.4 \frac{\times 10^{-9} \times 10^{-9}}{} \mathrm{pm} / \mathrm{ns}
$$

$$
\begin{aligned}
& \# p^{\prime \prime}+\# n^{0} \\
& 24_{4}=11 p^{+}+13 n^{0}
\end{aligned}
$$

$$
=3.4 \times 10^{-3} \mathrm{pm} / \mu \mathrm{s}
$$

