Exam 3a Chem 1141 Fall 2008

Name:

Multiple Choice. [3 pts ea.]
Q1. The SI unit of pressure is the pascal (Pa). It is defined as being equal to:
a) $1 \mathrm{~Pa}=1 \mathrm{~N}$
b) $1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{s}$
(c) $1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$
d) $1 \mathrm{~Pa}=1 \mathrm{~m}^{2} / \mathrm{N}$
e) $1 \mathrm{~Pa}=1 \mathrm{~m} / \mathrm{s}$

Q2. Which of the following elements is not found as a diatomic gas under regular conditions on earth:
a) nitrogen
b) helium
c) hydrogen
d) oxygen
e) fluorine

Q3. The volume of a gas is directly proportion to its absolute temperature. This is commonly known as:
a) Avogadro's law
b) Boyle's law
(c) Charles' law
d) Gay-Lussac's law
e) van der Waal's law

Q4. Given the following chemical equation:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

What volume of hydrogen gas is required to fully react with 3.0 L of nitrogen gas at STP?
a) 1.0 L
b) 3.0 L
c) 4.5 L
d) 6.0 L
(e) 9.0 L

Q5. Which pressure is the largest:
(a) 1 atm
b) 1 mmHg
c) 1 torr
d) 1 Pa

Q6. A 4.50 g sample of metal absorbs 76.0 J of heat, and changes in temperature from $24.0^{\circ} \mathrm{C}$ to $155.1^{\circ} \mathrm{C}$. What is the specific heat capacity of the metal?
(a) $0.129 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
b) $0.341 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
c) $1.45 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
d) $14.2 \mathrm{~J} / \mathrm{g}$. ${ }^{\circ} \mathrm{C}$
e) $89 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$

Q7. Which chemical equation corresponds to the standard enthalpy of formation of $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{Cl}(1)$?
a) $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{Cl}(\mathrm{l})+111 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{HCl}(\mathrm{aq})$
b) $2 \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{Cl}(\mathrm{l})+23^{1 / 2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+15 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g})$
c) $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{Cl}(\mathrm{l}) \rightarrow 8 \mathrm{C}($ s, graphite $)+15 \mathrm{H}(\mathrm{g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g})$
d) $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{Cl}(\mathrm{l}) \rightarrow 8 \mathrm{C}(\mathrm{s}$, graphite $)+71 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g})$
(e) $8 \mathrm{C}\left(\mathrm{s}\right.$, graphite) $+71 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{Cl}(\mathrm{l})$

Q8. A chemical reaction that absorbs heat is said to be:
a) Exoergic
b) Endoergic
c) Exothermic
d) Endothermic

Q9. Which of the following standard enthalpy of formation values is not zero at $25^{\circ} \mathrm{C}$?
a) $\mathrm{Na}(\mathrm{s})$
b) $\mathrm{Ne}(\mathrm{g})$
(c) $\mathrm{CH}_{4}(\mathrm{~g})$
d) $\mathrm{Hg}(\mathrm{l})$
e) $\mathrm{H}_{2}(\mathrm{~g})$

Q10. Calculate ΔH° for the reaction:

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

given that $\Delta H_{\mathrm{f}}^{\circ}$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is $-285.8 \mathrm{~kJ} / \mathrm{mol}$.
a) $-285.8 \mathrm{~kJ} / \mathrm{mol}$
b) $+285.8 \mathrm{~kJ} / \mathrm{mol}$
c) $+142.9 \mathrm{~kJ} / \mathrm{mol}$
d) $-142.9 \mathrm{~kJ} / \mathrm{mol}$
(e) $+571.6 \mathrm{~kJ} / \mathrm{mol}$

Q11. A particle of light is called $a(n)$:
a) Proton
b) Electron
c) Quantum
d) Positron
(c) Photon

Q12. Which form of electromagnetic (EM) radiation has the longest wavelength?
(a) Radio
b) Ultraviolet
c) Visible
d) X-Ray
e) Infrared

Q13. Which set of quantum numbers for an electron in atom is not allowed:
a) $n=3, l=2, m_{l}=-1, m_{s}=+1 / 2$
b) $n=1, l=0, m_{l}=0, m_{s}=-1 / 2$
c) $n=4, l=1, m_{l}=0, m_{s}=+1 / 2$
(d) $n=1, l=1, m_{l}=0, m_{s}=-1 / 2$
e) $n=8, l=6, m_{l}=-3, m_{s}=+1 / 2$

Q14. Atoms of neon are paramagnetic.
a) TRUE
(b) FALSE

Q15. Atoms of oxygen are paramagnetic.
(a) TRUE
b) FALSE

Q16. [8 pts.] Write the full electron configuration for
i) oxygen. $1 s^{2} 2 s^{2} 2 p^{4}$
ii) copper $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}$
iii) chlorine

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}
$$

Q17. [6 pts.] Draw an orbital diagram for an atom of phosphorus.

Q18. [8 pts.] Calculate the frequency of light emitted from a hydrogen atom undergoing an electron transition from $n=5$ to $n=2$.
$\Delta E=E_{f}-E_{i}=-\frac{R_{H}}{2^{2}} \Theta-\frac{R_{H}}{5^{2}}=R_{H}\left(\frac{1}{25}-\frac{1}{4}\right)=-0.21 \times R_{H}$
$\Rightarrow \Delta E=-0.21 \times 2.18 \times 10^{-18} \mathrm{~J}=-4.58 \times 10^{-19} \mathrm{~J}$.
-ve \Rightarrow atom loses $4.58 \times 10^{-19} \mathrm{~J}$ of energy in the form of a photon.
$E_{\text {photon }}=h \nu=4.58 \times 10^{-19} \mathrm{~J}$

$$
\Rightarrow \nu=\frac{4.58 \times 10^{-19} \mathrm{~J}}{h}=\frac{4.58 \times 10^{-19} \mathrm{~J}}{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}=6.91 \times 10^{14} \mathrm{~s}^{-1} \text { or } \mathrm{Hz} .
$$

Q19. [5 pts.] A sample of an ideal gas whose volume is 45.6 mL at a temperature of $127^{\circ} \mathrm{C}$ is cooled down to $-87^{\circ} \mathrm{C}$. What will its new volume be?

$$
\begin{aligned}
& \frac{V_{1}}{T_{1}}=\frac{V_{2} ?}{T_{2} V} \Rightarrow V_{2}=\frac{V_{1}}{T_{1}} \times T_{2} \Rightarrow V_{2}=\frac{45.6 \mathrm{~mL}}{400 \mathrm{~K}} \times 1861 \mathrm{C} \\
& T_{1}=127+273=400 . \mathrm{K} \quad=21.2 \mathrm{~mL} \quad\left(35 . \mathrm{F}_{-}\right) \\
& =21.2 \mathrm{~mL} \quad\left(35 . f_{-}\right) \\
& T_{2}=-87^{\circ} \mathrm{C}+273=186 \mathrm{~K} \\
& \text { Q20. [8 pts.] How much heat will be absorbed/released from the complete combustion of } 34.0 \mathrm{~g} \text { of } \\
& \text { pentane, } \mathrm{C}_{5} \mathrm{H}_{12}(1) \text {. } \\
& \mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{l})+8 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 5 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \Delta H_{\mathrm{f}}{ }^{\circ} \mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{l})=-146.9 \mathrm{~kJ} / \mathrm{mol} \quad \Delta H_{\mathrm{f}}^{\circ} \mathrm{CO}_{2}(\mathrm{~g})=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta H_{\mathrm{f}}{ }^{\circ} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-285.8 \mathrm{~kJ} / \mathrm{mol} \\
& \frac{V_{1}}{T_{1}}=\frac{V_{2} ?}{T_{2} V} \Rightarrow V_{2}=\frac{V_{1}}{T_{1}} \times T_{2} \Rightarrow V_{2}=\frac{45.6 \mathrm{~mL}}{400 \mathrm{~K}} \times 1861 \mathrm{C} \\
& \Delta H_{f}^{\circ}{ }^{\circ} \mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{l})=-146.9 \mathrm{~kJ} / \mathrm{mol} \quad \Delta H_{\mathrm{f}}{ }^{\circ} \mathrm{CO}_{2}(\mathrm{~g})=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta H_{\text {rn }}^{\circ}=\sum \Delta H_{f}^{\circ}(\text { prods })-(\text { reach }) \\
& =\left[5 \times \Delta H_{f}^{\circ}\left(\mathrm{CO}_{2(\mathrm{gl}}\right)+6 \times \Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{ll})\right] \odot\left[1_{\times} \Delta H_{f}^{\circ}\left(\mathrm{C}_{\mathrm{S}} H_{12(\mathrm{le})}\right)+8 \times \Delta H_{f}^{0}\left(\mathrm{O}_{2(\mathrm{~g})}\right)\right.\right. \\
& =[5 \times-393.5+6 \times-285.8]-[1 \times-146.9]=-3535.4 \mathrm{~kJ} / \mathrm{mol} \text {. }
\end{aligned}
$$

$\mathrm{C}_{5} \mathrm{H}_{12}$
$5 \times=5 \times 12.01$
$12+H=\frac{12 \times 1.01}{\frac{72.2}{\mathrm{Q} 21.15}}$

$$
\int / 34 \cdot \mathrm{Og}_{5} \mathrm{C}_{5} \mathrm{H}
$$

$\Delta H=q_{p}=-\frac{3535.4 \mathrm{KJ}}{1 \mathrm{~mol} \mathrm{C} \mathrm{C}_{12}} \times \#_{\mathrm{mol} \mathrm{C}_{5} \mathrm{H}_{12}}$

$$
\iint 34 . \mathrm{Og}_{5} \mathrm{C}_{5} \mathrm{H}_{12} \times \frac{I_{\mathrm{mol}} \mathrm{C}_{5} \mathrm{H}_{12}}{72.2 \mathrm{~g} \mathrm{C}_{512}}=0.4
$$

$$
\begin{aligned}
\Rightarrow q & =\frac{-3535.4 \mathrm{~kJ}}{1 \mathrm{~mol} \mathrm{Cs} H_{12}} \times 0.471 \mathrm{~mol} \mathrm{C}_{5} H_{12} \\
q & =-1670 \mathrm{~kJ} \quad \text { (released) }
\end{aligned}
$$

Q21. [5 pts.] 34.5 mL of $12.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ is added to 128 mL of $\mathrm{H}_{2} \mathrm{O}$. Calculate the final concentration of HCl . State any assumptions that you are making.
$1 M_{1} V_{1}=M_{2} V_{2} \quad 34.5 \mathrm{~mL}+128 \mathrm{~mL}=163 \mathrm{~mL}$ (assuming Volumes ore additive!)
$12.0 \mathrm{M} \quad 34.5 \mathrm{~mL}$

$$
\Rightarrow M_{2}=\frac{M_{1} V_{1}}{V_{2}}=\frac{12.0 \mathrm{M} \times 34.5 \mathrm{~mL}}{163 \mathrm{~mL}}=2.54 \mathrm{M}
$$

Q22. [10 pts.] What volume of $\mathrm{CO}_{2}(\mathrm{~g})$ will be formed by the reaction of 34.0 mL of $1.45 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ with 67.8 mL of $5.60 \mathrm{M} \mathrm{LiHCO}_{3}(\mathrm{aq})$? The reaction is carried out at a temperature of $35^{\circ} \mathrm{C}$, and a pressure of 0.987 atm . Be sure to start by writing out the balanced chemical equation!
\Rightarrow Actual \#mol $\mathrm{CO}_{2(\mathrm{~g})}=0.0493 \mathrm{~mol}$

$$
p=0.987 \mathrm{~atm}
$$

Q23. [5 pts.] Name the following compounds:
a) $\mathrm{Na}_{3} \mathrm{PO}_{4}$ Sodium phosphate
b) $\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{2}$ inon(II) nitrite
c) $\mathrm{MgF}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ magnesium fluoride trihydrate
d) $\mathrm{B}_{3} \mathrm{Cl}_{9}$ triboron nonachloride
e) $\mathrm{N}_{4} \mathrm{O}_{8}$

$$
\begin{aligned}
& p V=n R T \Rightarrow V=\frac{n R T}{P} \\
& n=0.0493 \mathrm{~mol} \\
& R=0.08206 \frac{\mathrm{ahm} \cdot \mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& T=35+273=308 \mathrm{~K} \\
& \Rightarrow V=\frac{0.0493 \mathrm{~mol} \times 0.08206 \frac{\mathrm{ahm} \cdot \mathrm{~L}}{\mu_{0} 1 \cdot \mathrm{~K}} \times 3081 \mathrm{~d}}{0.987 \mathrm{~atm}} \\
& =\underline{ } \text { (3s.f.) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{HCl}_{\text {(aq) }}+\mathrm{LiHCO}_{3 \text { (aq) }} \longrightarrow \mathrm{LiCl}_{(\text {aq) }}+\mathrm{H}_{2} \mathrm{O}_{(e)}+\mathrm{CO}_{2}(\mathrm{~g}) \uparrow \\
& \begin{array}{l|l|l|l}
34.0 \mathrm{~mL} & 10^{-3 \mathrm{~L}} & 1.45 \mathrm{~mol} \mathrm{HCl} & \operatorname{lmol}_{\mathrm{mol}}\left(\mathrm{O}_{2}(9)\right. \\
\hline & \mathrm{mL} & 1 \mathrm{C} & I_{\text {mol }} \mathrm{HCl}
\end{array}=0.0493 \mathrm{mal} \mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

