Exam 4a Chem 1141
 Fall 2008

Name: \qquad
Multiple Choice. [3 pts ea.] Circle the best response.
Q1. How many valence electrons does an atom of carbon contain?
a) 1
b) 2
c) 3
d) 4
e) 5

Q2. How many core electrons does an atom of carbon contain?
a) 1
(b) 2
c) 3
d) 4
e) 5

Q3. The electron configuration of S^{2-} is:
a) $1 \mathrm{~s}^{2}$
b) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$
c) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2}$
(d) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
e) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$

Q4. The relative sizes of carbon, oxygen, and selenium atoms would be:
a) $\mathrm{C}<\mathrm{O}<\mathrm{Se}$
b) $\mathrm{Se}<\mathrm{O}<\mathrm{C}$
c) $\mathrm{O}<\mathrm{Se}<\mathrm{C}$
d) $\mathrm{Se}<\mathrm{C}<\mathrm{O}$
(e) O $<$ C $<\mathrm{Se}$

Q5. An element has the following ionization energies: $I_{1}=212 \mathrm{~kJ} / \mathrm{mol}, I_{2}=422 \mathrm{~kJ} / \mathrm{mol}, I_{3}=630 \mathrm{~kJ} / \mathrm{mol}$, $I_{4}=13100 \mathrm{~kJ} / \mathrm{mol}$. Which element is it be most likely to be?
a) Si
b) Al
c) Mg
d) Na
e) Ne

Q6. The chemical equation corresponding to the first electron affinity of sodium is:
a) $\mathrm{Na}(\mathrm{g}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{-}$
b) $\mathrm{Na}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-}$
(c) $\mathrm{e}^{-}+\mathrm{Na}(\mathrm{g}) \rightarrow \mathrm{Na}^{-}$(g)
d) $\mathrm{e}^{-}+\mathrm{Na}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{s})$

Q7. The total number of valence electrons in the NO^{-}anion is:
a) 16
b) 14
(c) 12
d) 11
e) 10

Q8. The type of bond formed by the sharing of 2 electrons is:
a) Ionic
b) Polar covalent
(c) single bond
d) double bond e) triple bond

Q9. The number of lone pairs on a hydrogen sulfide molecule, $\mathrm{H}_{2} \mathrm{~S}$ is:
a) 0
b) 1
(c) 2
d) 3
e) 4

Q10. Which bond would be the most polar: $\mathrm{C}-\mathrm{N}$ or $\mathrm{C}-\mathrm{O}$?
a) $\mathrm{C}-\mathrm{N}$
(b) $\mathrm{C}-\mathrm{O}$
c) Impossible to tell

Q11. The formal charge on the sulfur atom in the following polyatomic ion is:

a) -2
b) -1
c) 0
d) +1
e) +2

Q12. The formal charge the nitrogen atom in the following polyatomic ion is:

a) -2
b) -1
c) 0
(d) +1
e) +2

Q13. The molecular geometry of the following molecule is:

a) Linear
b) Bent
c) Square Planar d) Tetrahedral
e) Trigonal bipyramidal

Q14. The molecular geometry of the following molecule is:

a) Octahedral
b) Bent
c) See-saw
d) Tetrahedral
e) Trigonal bipyramidal

Short Response.

Show ALL work to receive credit. Use the conversion factor method for all problems to receive full credit.
Q15. [8 pts.] Write full electron configurations for the following ions:
a) $\mathrm{Cr}^{+} \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$
b) $\mathrm{Mg}^{2+} 1 s^{2} 2 s^{2} 2 p^{6}$
c) $\mathrm{V}^{2+} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3}$
d) $\mathrm{O}^{2-} 1 s^{2} 2 s^{2} 2 p^{6}$

Q16. [6 pts.] Draw a valid Lewis structure for the sulfite ion, $\mathrm{SO}_{3}{ }^{2-}$

$$
\sqrt{6}+3 \times 6+2=26 \text { valence } e^{\prime} s .
$$

Q17. [6 pts.] Draw all possible resonance structures for S_{3}.

$$
\ddot{s}=\ddot{s}-\ddot{s}: \longleftrightarrow \quad \ddot{s}-\ddot{s}=\ddot{s}
$$

Q18. [6 pts.] Is CSe_{2} polar or non-polar? Explain.
Lewis: $\ddot{S}_{e} \stackrel{(1)}{=} \stackrel{(2)}{=} \ddot{S}_{e}$
If C is more elway than S

VSEPR: 2 rupution \Rightarrow Linear.
if Se is more electronegative than c: $\longleftarrow+\longrightarrow$ bond dipoles cancel out

Q19. [9 pts.] Name the following compounds: \Rightarrow NoNLPOCAR!

Bond dipoles ronal out \Rightarrow NON-POCAR
\Rightarrow Must beanon-poler modern
a) $\mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2}$ magnesium nitrate
b) FeO
iron(11) oxide
c) $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ Sodium suffath tetrahydrate

Q20. [12 pts.] Predict the molecular geometry of $\mathrm{H}_{2} \mathrm{~S}$ using VSEPR theory. Be sure to include (1) a valid Lewis structure, (2) a sketch of the molecular geometry, (3) the name of the molecular geometry, and (4) approximate bond angles.

$$
\frac{H_{2} S}{2 \times 1+1 \times 6}=8 \text { valence es }
$$

(4)

$\underbrace{\text { Men }}_{\text {Molecules geometry atom: ar! }}$

Q21. [6 pts.] 24.5 mL of $0.100 \mathrm{M} \mathrm{AgNO}_{3}(\mathrm{aq})$ was mixed with 13.4 mL of $0.350 \mathrm{M} \mathrm{MgCl}_{2}(\mathrm{aq})$. A white precipitate is formed which weighs 0.283 g . Calculate the percent yield of the reaction.

$$
\begin{aligned}
& 2 \mathrm{AgNO}_{3} \text { aq) }+\mathrm{MgCl}_{2}(a q) \longrightarrow 2 \mathrm{AgCl}_{\text {(s) })} \longrightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \text { (aq) }
\end{aligned}
$$

$$
\begin{aligned}
& \% \text { yield }=\frac{0.2839}{0.3515} \times 100 \%=80.6 \%
\end{aligned}
$$

Q22. [5 pts.] One of the most commonly used white pigments in paint is a compound of titanium and oxygen that contains 59.9% Ti by mass. Determine the empirical formula of this compound.
10 g sample

$$
\begin{aligned}
& 59.9 \mathrm{~S} T_{i} \times \frac{1 \text { mol } T_{i}}{47.88 \mathrm{~g} T_{i}}=1.25 \mathrm{~mol} T_{i} \\
& \begin{array}{l|l}
40 \cdot \lg O & 1 \mathrm{~mol} 0 \\
16.00 \mathrm{~g} \mathrm{O}
\end{array}=2.51 \mathrm{~mol} 0 \\
& \text { BONUS: (A) Predict } \Delta H^{\circ} \text { for the reaction: } \\
& \frac{1.25 \mathrm{~mol} \mathrm{~T}_{i}}{1.25}: \frac{2.51 \mathrm{~mol} 0}{1.25} \\
& \Rightarrow 1.00 T_{i}: 2.010 \\
& -2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \\
& 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \approx 1 T_{i}: 20 \\
& \Rightarrow \mathrm{TiO}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \times A_{y}=107.9 \\
& 1 \times a=\frac{35.45}{143.4}
\end{aligned}
$$

Given the following table of bond energies:

Type of Bond	Bond Energy / kJ mol${ }^{-\mathbf{1}}$
$\mathrm{H}-\mathrm{H}$	436.4
$\mathrm{O}=\mathrm{O}$	498.7
$\mathrm{O}-\mathrm{H}$	460,

(B) How much heat would be produced/absorbed if 12.0 g of water was formed?
(a)

Break: $2 \times H-H+1 \times 0=0=\Theta 2 \times 436.4 \oplus 1 \times 498.7=\Theta 1371.5 \mathrm{~kJ} / \mathrm{mol}$
Make: $4 \times 0-H=\Theta 4 \times 460=-1840 \mathrm{~kJ} / \mathrm{mol}$

$$
\Rightarrow \Delta H=+1371.5 \mathrm{kT} / \mathrm{wol}^{2}-1840 \mathrm{ks} / \mathrm{wol}=-469 \mathrm{~kJ} / \mathrm{mol}
$$

(b)

$$
\begin{aligned}
& \frac{12 \mathrm{Og} \mathrm{H}_{2} \mathrm{O}}{1 / 18} \\
& \frac{20}{2 \times H}=2 \times 1.01=\frac{2.02}{1 \times O}=1 \times 16.00=\frac{16.00}{18.02}
\end{aligned}
$$

H,O

