Exam 4a Chem 1141 Fall 2008

Name:	KEY			
MULTIPLE CHOICE. [3	pts ea.] Circle th	e best response.		
Q1. How many valence a) 1	electrons does an	atom of carbon c) 3	contain? d) 4	e) 5
Q2. How many core ele a) 1	ctrons does an at	om of carbon cor c) 3	ntain? d) 4	e) 5
Q3. The electron config a) 1s ²	guration of S ² - is: b) 1s ² 2s ²	c) 1s ² 2s ² 2p ⁶ 3s ²	d) 1s ² 2s ² 2p ⁶ 3s ² 3	p ⁶ e) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²
Q4. The relative sizes o a) $C < O < Se$	f carbon, oxygen, b) Se < O < C	and selenium ato c) O < Se < C	oms would be: d) Se < C < O	e)O < C < Se
Q5. An element has the $I_4 = 13100 \text{ kJ/mol.}$ a) Si				= 422 kJ/mol, I_3 = 630 kJ/mol, e) Ne
Q6. The chemical equat a) $Na(g) \rightarrow Na$ b) $Na(s) \rightarrow Na$ c) $e^- + Na(g) - d$ d) $e^- + Na(s) - d$	+(g) + e- +(aq) + e- → Na-(g)	g to the first elec	tron affinity of so	odium is:
Q7. The total number of a) 16	of valence electron b) 14	ns in the NO- ani	on is: d) 11	e) 10
Q8. The type of bond for a) Ionic	ormed by the sha b) Polar covaler		s is:	d) double bond e) triple bond
Q9. The number of lona a) 0	e pairs on a hydro b) 1	ogen sulfide mole	cule, H ₂ S is: d) 3	e) 4
Q10. Which bond would a) C—N		lar: C—N or C—c) Impossible to		
Q11. The formal charge	on the sulfur ato	om in the following	ng polyatomic ior	n is:
s=n=	=;]			
a) -2	b) -1	c) 0	d) +1	e) +2

Q12. The formal charge the nitrogen atom in the following polyatomic ion is:

$$\begin{bmatrix} \vdots & & & \vdots \\ & & & & \vdots \\ a) -2 & & b) -1 & & c) 0 & & (d) +1 & & e) +2 \end{bmatrix}$$

Q13. The molecular geometry of the following molecule is:

Q14. The molecular geometry of the following molecule is:

Short Response.

Show ALL work to receive credit. Use the conversion factor method for all problems to receive full credit.

Q15. [8 pts.] Write full electron configurations for the following ions:

a)
$$Cr^{+}$$
 $|s^{2}2s^{2}2\rho^{6}3s^{2}3\rho^{6}3d^{5}$
b) Mg^{2+} $|s^{2}2s^{2}2\rho^{6}$
c) V^{2+} $|s^{2}2s^{2}2\rho^{6}3s^{5}3\rho^{6}3d^{3}$
d) O^{2-} $|s^{2}2s^{5}2\rho^{6}$

Q16. [6 pts.] Draw a valid Lewis structure for the sulfite ion, SO32-6+3x6+2 = 26 valence es.

Q17. [6 pts.] Draw all possible resonance structures for S_3 . S = S - S: S = S

Q18. [6 pts.] Is CSe2 polar or non-polar? Explain.

Lewis: Se = C = Se

VSEPR: 2 repulsion > Linear.

If C is more elling than Se

₹<u></u>==\$

Bond dipoles round ont

> Must be a non-poler moleru

if Se is more electronogative than C:

vore
ive han C:

Q19. [9 pts.] Name the following compounds:

Dond dipoles ranged out => NON-POLAR

a) Mg(NO2)2 magnesium nitrati

b) FeO iron(11) oxide

c) Na2SO4·4H2O Sodium sulfate tetrahydrate

Q20. [12 pts.] Predict the *molecular* geometry of H₂S using VSEPR theory. Be sure to include (1) a valid Lewis structure, (2) a sketch of the molecular geometry, (3) the name of the molecular geometry, and (4) approximate bond angles.

425 2x1+1x6=8 valence es

Q21. [6 pts.] 24.5 mL of 0.100 M AgNO₃(aq) was mixed with 13.4 mL of 0.350 M MgCl₂(aq). A white precipitate is formed which weighs 0.283 g. Calculate the percent yield of the reaction. 2 Ag NO3 109 + Mg (121921 -> 2 Ag (1151+ Mg (NO3)2 102)

24.5ml 10-36 | 0.100 mol Ag Noz 2 mol Aga 143.40 Aza - 0.351g Aza

13.4ml 10-3/ 0.350mol Mgaz 2 mol Aga 143.49 Aga = 1.35g Aga

% yield = $\frac{0.2839}{0.3516}$ x $(100)^2$. = $\frac{20.6\%}{0.3516}$ Q22. [5 pts.] One of the most commonly used white pigments in paint is a compound of titanium and oxygen

that contains 59.9% Ti by mass. Determine the empirical formula of this compound.

$$|\frac{100}{9} = \frac{1}{25} = \frac{1}{25$$

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

Given the following table of bond energies:

Type of Bond	Bond Energy / kJ mol-1		
Н–Н	436.4		
O=O	498.7		
О–Н	460.		

(B) How much heat would be produced/absorbed if 12.0 g of water was formed?

Break: 2xH-H + 1x0=0 = @2x436.4@1x498.7 = @1371.5kJ/mol = 04 x 460 = -1840 KJ/mol Make: 4 x 0-H

2xH=2x1.01=2.02 40=1x16.00=16.00