# Chem 1141 Fall 2014 Exam 3D

| Name:                                             |                                         |
|---------------------------------------------------|-----------------------------------------|
| Please write your full name, and which exam versi | on (3D) you have on the scantron sheet. |
| Please ☑ check the box next to your correc        | t section number.                       |
| Section #: 🗖 1. (Tuesday Lab, 4 – 6:5             | 0 pm) □ 2. (Thursday Lab, 4 – 6:50 pm)  |
| ☐ 3. (Monday Lab, 11 – 1                          |                                         |
| ☐ 5. (Wednesday Lab, 2 -                          | - 4:50 pm)                              |
| Multiple Choice:                                  | /30                                     |
| Q11:                                              | /10                                     |
| Q12:                                              | /10                                     |
| Q13:                                              | /10                                     |
| Q14:                                              | /10                                     |
| Q15:                                              | /10                                     |
| Q16:                                              | /10                                     |
| Q17:                                              | /10                                     |
| BONUS:                                            | /3                                      |

TOTAL: /100

#### Multiple Choice. [3 points each.] Record your answers to the multiple choice questions on the scantron sheet.

| Q1. | The amount of hea<br>a) heat capacity<br>e) calorimetry                                                                                                                  | at required to rais<br>b) internal                                                                | _                               | •                                               | ram of a subst<br>nalpy       | ance by 1°C is<br>d) specifi  | -                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------|-------------------------------|-------------------------------|-------------------------|
| Q2. | In the van der Waa<br>a) The polarity of<br>c) The attractions<br>e) The diffusion o                                                                                     | the gas particles<br>between the gas                                                              | particles                       | b) The l                                        | inetic energy                 | of the gas par<br>les         | ticles                  |
| Q3. | The overall reaction $4\text{Fe}(s) + 3t$<br>How much heat is                                                                                                            | $3O_2(g) \longrightarrow 2Fe_2$                                                                   | $_{2}O_{3}(s)$                  | $\Delta H^{\rm o}_{\rm rxn} = -165$             | 52 kJ/mol                     |                               |                         |
|     | a) 1652 kJ                                                                                                                                                               | b) 826.0 kJ                                                                                       | Ţ                               | c) 3304 kJ                                      | d) 9                          | 910 kJ                        | e) 275.3 kj             |
| Q4. | Given the following $A(aq) + 2$                                                                                                                                          | g thermochemica<br>$B(aq) \longrightarrow C(g)$                                                   | -                               | $; \Delta H^{\circ}_{\rm rxn} = +12$            | 2.0 kJ/mol                    |                               |                         |
|     | Then calculate $\Delta H^{\circ}$<br>2C(g) + 2<br>a) +24.0 kJ/mol<br>e) Not enough inf                                                                                   | $2D(s) \longrightarrow 2A(a)$<br>b) $-24.0 \text{ kg}$                                            | J/mol T                         | ,                                               | l d) -                        | -6.0 kJ/mol                   |                         |
| Q5. | Which substance(s a) N <sub>2</sub> (l) b)                                                                                                                               | ) below <b>does not</b><br>(Xe(g)                                                                 | : have a heat<br>c) Na(         |                                                 | $(H_{ m f}^{\circ})$ equal to |                               | and 1 atm?<br>) a and b |
| Q6. | The set of quantum<br>a) $n = 3$ ; $l = 0$ ; $m_l$<br>b) $n = 3$ ; $l = 2$ ; $m_l$<br>c) $n = 3$ ; $l = 1$ ; $m_l$<br>d) $n = 4$ ; $l = 0$ ; $m_l$<br>e) none of the abo | $= 0; m_s = 0$ $= -2, -1, 0, +1, 0$ $= -1, 0, \text{ or } +1; m_s$ $= -1, 0, \text{ or } +1; m_s$ | or +2; $m_s = \frac{1}{2}$ or - | $+\frac{1}{2}$ or $-\frac{1}{2}$                | on in a 3p orb                | ital is:                      |                         |
| Q7. | "No two electrons<br>a) Pauli exclusion<br>d) de Broglie's rela                                                                                                          | principle                                                                                         | b) Bol                          | ne four quantum<br>hr's equation<br>omic theory |                               | a statement ca<br>Hund's rule | lled:                   |
| Q8. | Which of the follo                                                                                                                                                       | owing correspond                                                                                  | ds to the sha                   | ape of a p-orbital                              | ?                             |                               |                         |
|     | a)                                                                                                                                                                       | b)                                                                                                |                                 | c)                                              | d)                            |                               |                         |

Q9. Which color of visible light has the highest energy per photon?

a) Red

b) Orange

c) Yellow

d) Green

e) Blue

- Q10. The ground-state electron configuration of  $_{24}$ Cr is:
  - a)  $[Ar]4s^23d^4$
- b) [Ar]4s<sup>2</sup>4p<sup>6</sup>
- c)  $[Ar]4s^03d^6$
- $d) [V] 3d^{1}$
- e) [Ar]4s13d5

#### **Short Response.**

Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and write your answers using the correct number of significant figures or decimal places.

Q11. [10 pts.] a) Write the full electron configuration for  $_{22}$ Ti.

b) Draw out the full orbital diagram for 22Ti.

c) Is 22Ti diamagnetic or paramagnetic? Explain your answer.



Q14. [10 pts.] According to Bohr's theory of the atom, calculate the wavelength of light **absorbed/emitted** (state which) by the hydrogen atom in an electron transition from

n = 3 to n = 1. What region of the EM spectrum does this wavelength correspond to?



Q15. [10 pts.] The specific heat of the organic solvent toluene, C<sub>7</sub>H<sub>8</sub>, is 1.13 J/g·°C. How much heat is needed to raise the temperature of 0.155 kg of toluene from 22.8°C (room temperature) to its boiling point, 111.0°C?

Q16. [10 pts.] Calculate  $\Delta H^{\circ}_{rxn}$  for:

$$C(graphite) + 2H_2(g) + \frac{1}{2}O_2(g) \longrightarrow CH_3OH(l)$$

using the following information

$$\begin{split} &C(graphite) + O_2(g) \longrightarrow CO_2(g) \\ &H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l) \\ &CH_3OH(l) + \frac{3}{2}O_2(g) \longrightarrow CO_2(g) + 2H_2O(l) \end{split} \qquad \Delta H^\circ = -393.5 \text{ kJ/mol}$$

### Q17. [10 pts.] Fill in the blanks:

| Electrons in atoms are described using four quantum numbers. The principal quantum number, $n$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| determines the of the orbital. The angular momentum quantum number, <i>l</i> , which takes                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| values from to, determines the of the orbital. The third quantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| number, $m_l$ , which is called the quantum number, determines the of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| the orbital. The final quantum number, $m_s$ which can only take one of two values, is called the                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| quantum number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| determines the of the orbital. The angular momentum quantum number, <i>l</i> , which takes values from to, determines the of the orbital. The third quantum number, <i>m<sub>l</sub></i> , which is called the quantum number, determines the of the orbital. The final quantum number, <i>m<sub>s</sub></i> which can only take one of two values, is called the quantum number.  The symbol for the wavefunction, or orbital, is given by the Greek letter psi, which is written:  The wavefunction comes from solving the equation—one of the fundamental |  |
| The wavefunction comes from solving the equation—one of the fundamental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| equations in quantum mechanics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

**BONUS**:

A 60.0 g sample of an alloy was heated to 96.0 °C and then dropped into a beaker containing 87.0 g of water at a temperature of 24.10 °C. The temperature of the water rose to a final value of 27.63 °C. The specific heat of water is  $4.184 \, \text{J/g}$  °C. What is the specific heat of the alloy?

Useful Information:

$$pV = nRT \qquad \left(p + \frac{an^2}{V^2}\right)(V - nb) = nRT \qquad 1 \text{ atm} = 760 \text{ mmHg} = 101325 \text{ Pa}$$

$$R = 0.08206 \frac{\text{atm} \cdot L}{\text{mol} \cdot K} \qquad v_{rms} = \sqrt{\frac{3RT}{M}}$$

$$C\Delta t \qquad c = v\lambda \qquad E = 0$$

$$q = ms\Delta t \qquad q = C\Delta t$$

$$b = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$$

$$E = hv$$
  $c = 3.00 \times 10^8 \text{ m/s}$ 

$$h = 6.626 \times 10^{-34} \,\text{J} \cdot \text{s}$$

$$E_n = -R_{\rm H} \left( \frac{1}{n^2} \right)$$
  $R_{\rm H}$ 

$$R_{\rm H} = 2.18 \times 10^{-18} \,\rm J$$

$$\lambda = \frac{h}{mu}$$

| van der Waals Constants<br>of Some Common Gases |                                          |                                     |  |  |  |  |  |  |  |
|-------------------------------------------------|------------------------------------------|-------------------------------------|--|--|--|--|--|--|--|
| Gas                                             | $\binom{a \tan \cdot L^2}{\text{mol}^2}$ | $\left(\frac{L}{\text{mol}}\right)$ |  |  |  |  |  |  |  |
| Не                                              | 0.034                                    | 0.0237                              |  |  |  |  |  |  |  |
| Ne                                              | 0.211                                    | 0.0171                              |  |  |  |  |  |  |  |
| Ar                                              | 1.34                                     | 0.0322                              |  |  |  |  |  |  |  |
| Kr                                              | 2.32                                     | 0.0398                              |  |  |  |  |  |  |  |
| Xe                                              | 4.19                                     | 0.0266                              |  |  |  |  |  |  |  |
| $H_2$                                           | 0.244                                    | 0.0266                              |  |  |  |  |  |  |  |
| $N_2$                                           | 1.39                                     | 0.0391                              |  |  |  |  |  |  |  |
| $O_2$                                           | 1.36                                     | 0.0318                              |  |  |  |  |  |  |  |
| $Cl_2$                                          | 6.49                                     | 0.0562                              |  |  |  |  |  |  |  |
| $CO_2$                                          | 3.59                                     | 0.0427                              |  |  |  |  |  |  |  |
| CH <sub>4</sub>                                 | 2.25                                     | 0.0428                              |  |  |  |  |  |  |  |
| CCl <sub>4</sub>                                | 20.4                                     | 0.138                               |  |  |  |  |  |  |  |
| $NH_3$                                          | 4.17                                     | 0.0371                              |  |  |  |  |  |  |  |
|                                                 |                                          |                                     |  |  |  |  |  |  |  |

0.0305

## **Periodic Table**

|     | 1     |       |       |       |       |              |       |        |        |        |        |        |        |        |        |       |          | 18     |
|-----|-------|-------|-------|-------|-------|--------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-------|----------|--------|
|     | IA    |       |       |       |       |              |       |        |        |        |        |        |        |        |        |       | 1        | VIIIA  |
|     | 1     | 1000  |       |       |       |              |       |        |        |        |        |        |        |        |        |       | harbonen | 2      |
|     | H     | 2     |       |       |       |              |       |        |        |        |        |        | 13     | 14     | 15     | 16    | 17       | He     |
| L   | 1.01  | IIA   |       |       |       |              |       |        |        |        |        |        | IIIA   | IVA    | VA     | VIA   | VIIA     | 4.00   |
|     | 3     | 4     |       |       |       |              |       |        |        |        |        |        | 5      | 6      | 7      | 8     | 9        | 10     |
|     | Li    | Be    |       |       |       |              |       |        |        |        |        |        | В      | C      | N      | О     | F        | Ne     |
|     | 6.94  | 9.01  |       |       |       |              |       |        |        |        |        |        | 10.81  | 12.01  | 14.01  | 16.00 | 19.00    | 20.18  |
|     | 11    | 12    |       |       |       |              |       |        |        |        |        | 10750  | 13     | 14     | 15     | 16    | 17       | 18     |
|     | Na    | Mg    | 3     | 4     | 5     | 6            | 7     | 8      | 9      | 10     | 11     | 12     | Al     | Si     | P      | S     | Cl       | Ar     |
| L   | 22.99 | 24.31 | IIIB  | IVB   | VB    | VIB          | VIIB  | × .    | VIIIB  |        | IB     | IIB    | 26.98  | 28.09  | 30.97  | 32.07 | 35.45    | 39.95  |
| ſ   | 19    | 20    | 21    | 22    | 23    | 24           | 25    | 26     | 27     | 28     | 29     | 30     | 31     | 32     | 33     | 34    | 35       | 36     |
| - 1 | K     | Ca    | Sc    | Ti    | V     | Cr           | Mn    | Fe     | Co     | Ni     | Cu     | Zn     | Ga     | Ge     | As     | Se    | Br       | Kr     |
| L   | 39.1  | 40.08 | 44.96 | 47.88 | 50.94 | 52.00        | 54.94 | 55.85  | 58.93  | 58.69  | 63.55  | 65.39  | 69.72  | 72.61  | 74.92  | 78.96 | 79.90    | 83.80  |
|     | 37    | 38    | 39    | 40    | 41    | 42           | 43    | 44     | 45     | 46     | 47     | 48     | 49     | 50     | 51     | 52    | 53       | 54     |
|     | Rb    | Sr    | Y     | Zr    | Nb    | Mo           | Tc    | Ru     | Rh     | Pd     | Ag     | Cd     | In     | Sn     | Sb     | Te    | I        | Xe     |
|     | 85.47 | 87.62 | 88.91 | 91.22 | 92.91 | 95.94        | (98)  | 101.07 | 102.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.76 | 127.6 | 126.9    | 131.29 |
| ſ   | 55    | 56    | 57    | 72    | 73    | 74           | 75    | 76     | 77     | 78     | 79     | 80     | 81     | 82     | 83     | 84    | 85       | 86     |
|     | Cs    | Ba    | La*   | Hf    | Ta    | $\mathbf{W}$ | Re    | Os     | Ir     | Pt     | Au     | Hg     | Tl     | Pb     | Bi     | Po    | At       | Rn     |
| L   | 132.9 | 137.3 | 138.9 | 178.5 | 180.9 | 183.9        | 186.2 | 190.2  | 192,2  | 195.1  | 197.0  | 200.6  | 204.4  | 207.2  | 209    | (209) | (210)    | (222)  |
|     | 87    | 88    | 89    | 104   | 105   | 106          | 107   | 108    | 109    | 110    | 111    |        |        |        |        |       |          |        |
| ı   | Fr    | Ra    | Ac^   | Rf    | Db    | Sg           | Bh    | Hs     | Mt     | Ds     | Rg     |        |        |        |        |       |          |        |
|     | (223) | (226) | (227) | (261) | (262) | (263)        | (264) | (265)  | (268)  | (271)  | (272)  |        |        |        |        |       |          |        |

| ſ   | 58    | 59    | 60           | 61    | 62    | 63    | 64    | 65    | 66    | 67    | 68    | 69    | 70    | 71    |
|-----|-------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| *   | Ce    | Pr    | Nd           | Pm    | Sm    | Eu    | Gd    | Tb    | Dy    | Ho    | Er    | Tm    | Yb    | Lu    |
| 1   | 140.1 | 140.9 | 144.2        | (145) | 150.4 | 152.0 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.0 | 175.0 |
|     | 90    | 91    | 92           | 93    | 94    | 95    | 96    | 97    | 98    | 99    | 100   | 101   | 102   | 103   |
| ^   | Th    | Pa    | $\mathbf{U}$ | Np    | Pu    | Am    | Cm    | Bk    | Cf    | Es    | Fm    | Md    | No    | Lr    |
| - 1 | 232.0 | (231) | 238.0        | (237) | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (260) |