General Chemistry 1 (CHEM 1141) Shawnee State University - Fall 2021 October 21, 2021
 Exam 2A

Name

\qquad

Please write your full name, and the exam version (2 A) that you have on the scantron sheet! (Bubble in the best answer choice for each question on the green \& white scantron sheet in pencil !)

Please \square check the box next to your correct section number.

Section \#: \quad 1. (Mon Lab, 11:10 AM - 1:55 PM)

Fleeman

Napper

Multiple Choice:
Q21: \qquad / 10
Q22: \qquad / 10
Q23: \qquad / 10
Q24: \qquad / 10

Q25: \qquad / 10
BONUS: \qquad / 3

TOTAL: \qquad

You are only allowed to use a TI3o-XIIS or equivalent non-programmable calculator on this exam!

Q1. The atomic mass unit is defined as being equal to:
a) the mass of a hydrogen- 1 atom
b) $1 / 4$ the mass of a helium- 4 atom
c) $1 / 12$ the mass of a carbon- 12 atom
d) $1 / 16$ the mass of an oxygen -16 atom
e) 1 gram (exactly)

Q2. What is the mass of one atom of sulfur?
a) 16 g
b) 32.07 g
c) 16 u
d) 32.07 u

Q3. What is the molar mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
a) 87.05 g
b) 279.21 g
c) 310.18 g
d) 430.42 g
e) 560.21 g

Q4. What is the mass percent of hydrogen in $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$?
a) 9.17%
b) 2.29%
c) 57.1%
d) 36.1%
e) 1.01%

Q5. When the following chemical equation is balanced using the LOWEST set of WHOLE NUMBER coefficients, what is the coefficient in front of $\mathrm{H}_{2} \mathrm{O}$?

$$
\ldots \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{OH}(\mathrm{l})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

a) 2
b) 3
c) 5
d) 10
e) 12

Q6. Given the following balanced chemical equation:

$$
2 \mathrm{AgHCO}_{3}(\mathrm{aq})+\mathrm{CaCl}_{2}(\mathrm{aq}) \longrightarrow 2 \mathrm{AgCl}(\mathrm{~s})+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq})
$$

How many moles of AgCl can be formed from $4.0 \mathrm{~mol} \mathrm{CaCl}_{2}$ and $5.0 \mathrm{~mol} \mathrm{AgHCO}_{3}$?
a) 8.0 mol
b) 2.0 mol
c) 13 mol
d) 4.0 mol
e) 5.0 mol

Q7. Suppose only 0.80 mol of AgCl was formed in the previous reaction. What is the percent yield of this reaction?
a) 10%
b) $40 . \%$
c) 6.2%
d) $20 . \%$
e) 16%

Q8. What precipitate will form when a solution of $\mathrm{HNO}_{3}(\mathrm{aq})$ is mixed with a solution of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq})^{\text {? }}$
a) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
b) $\mathrm{H}\left(\mathrm{HCO}_{3}\right)_{2}$
c) $\mathrm{H}_{2} \mathrm{CO}_{3}$
d) CaH_{2}
e) No precipitate will be formed

Q9. Which of the following is NOT a strong acid?
a) HF
b) HBr
c) $\mathrm{H}_{2} \mathrm{SO}_{4}$
d) HClO_{4}
e) HNO_{3}

Q10. The oxidation number of the sulfur atom in $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is:
a) +12
b) +6
c) 0
d) -6
e) -12

Q11. What volume of $0.200 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ contains 0.100 mol HCl ?
a) $100 . \mathrm{mL}$
b) $200 . \mathrm{mL}$
c) $500 . \mathrm{mL}$
d) $1000 . \mathrm{mL}$
e) $2000 . \mathrm{mL}$

Q12. 25.0 mL of $2.40 \mathrm{M} \mathrm{LiNO}_{3}(\mathrm{aq})$ is mixed with 75.0 mL of water. What is the final concentration of $\mathrm{LiNO}_{3}(\mathrm{aq})$?
a) 0.600 M
b) 0.800 M
c) 0.0240 M
d) 0.00240 M
e) $240 . \mathrm{M}$

Q13. Which substance is the reducing agent in the following chemical equation:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

a) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
b) O_{2}
c) CO_{2}
d) $\mathrm{H}_{2} \mathrm{O}$

Q14. What mass would $0.16 \mathrm{~mol} \mathrm{CH}_{2} \mathrm{O}$ weigh?
a) 1.2 g
b) 2.4 g
c) 4.8 g
d) 9.2 g
e) $30 . \mathrm{g}$

Q15. If 0.66 moles of a substance has a mass of 99 g , what is the molar mass of the substance?
a) $120.0 \mathrm{~g} / \mathrm{mol}$
b) $150 \mathrm{~g} / \mathrm{mol}$
c) $170 \mathrm{~g} / \mathrm{mol}$
d) $180 \mathrm{~g} / \mathrm{mol}$
e) $65.34 \mathrm{~g} / \mathrm{mol}$

Q16. The element oxygen consists of three naturally occurring isotopes: ${ }^{16} \mathrm{O},{ }^{17} \mathrm{O},{ }^{18} \mathrm{O}$. The atomic mass of oxygen is 16.0 amu . What can be implied about the relative abundances of these isotopes?
a) almost all O atoms are ${ }^{18} \mathrm{O}$
b) almost all O atoms are ${ }^{17} \mathrm{O}$
c) the isotopes have the same abundance, i.e., 33%
d) the abundances of ${ }^{17} \mathrm{O}$ and ${ }^{18} \mathrm{O}$ are very small
e) none of the above

Q17. What is the mass (in grams) of $4.50 \times 10^{22} \mathrm{Cu}$ atoms?
a) $7.47 \times 10^{-2} \mathrm{~g}$
b) 4.75 g
c) 63.55 g
d) 74.73 g
e) 0.211 g

Q18. What of the following represents a combustion reaction?
a) $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b) $\mathrm{LiOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{LiNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
c) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
d) $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
e) $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$

Q19. The common constituent in all acid solutions is
a) H_{2}
b) H^{+}
c) OH^{-}
d) $\mathrm{H}_{2} \mathrm{SO}_{4}$
e) Cl^{-}

Q20. Which substance is acting as a Bronsted acid in the following reaction?

$$
\mathrm{HSO}_{4}^{-}+\mathrm{NH}_{4}^{+} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NH}_{3}
$$

a) HSO_{4}^{-}
b) $\mathrm{NH}_{4}{ }^{+}$
c) $\mathrm{H}_{2} \mathrm{SO}_{4}$
d) NH_{3}
e) both HSO_{4}^{-}and NH_{4}^{+}

Short Response.

Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and write your answers using the correct number of significant figures or decimal places.

Q21. [10 pts.] Write the balanced molecular, full-ionic, and net-ionic chemical equations for the following reaction: Be sure to include state symbols and charges where necessary.

Molecular: \quad _ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+\ldots \mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow$

Full-Ionic:

Net-Ionic:

Q22. [10 pts.] An organic compound is found to contain $63.1 \% \mathrm{C}, 7.43 \% \mathrm{H}$, and $29.5 \% \mathrm{~N}$ by mass. Calculate its empirical formula?

Q23. [10 pts.] In a titration experiment, what volume (in mL) of 0.520 M LiOH would be required to neutralize 35.0 mL of $1.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?

Hint: start by writing out a balanced chemical equation!

Q24. [10 pts.] Answer each of the questions listed below the reaction equation.
$\mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Cr}$

Provide a correctly balanced equation for this reaction by writing the correct coefficients in front of each reactant and product.

Show how to determine (by calculation) the theoretical yield (in grams) of Cr that could be produced by the reaction of 40.0 g of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ with 8.00 g of Al .

The limiting reactant for this equation is

Given the above conditions, a CHEM 1141 student carries out this reaction and obtains 12.5 g of Cr. Show how to determine (and then calculate) the percent yield for this reaction.

Q25. [10 pts.] From the given list of possible answers, choose the correct answer for each of the questions below.

Possible Answers

Arrhenius acid	Arrhenius base	solute	solvent	dilute
NaNO_{3}	$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	CaCl_{2}	KMnO_{4}	FeSO_{4}

A species that produces hydrogen ions when dissolved in water?

Which is an ionic compound that is insoluble in water?

Which compound contains an atom with an oxidation state of +7 ?

Which compound contains an atom with an oxidation state of -1 ? \qquad

Which is usually the smaller component present in a solution? \qquad

BONUS QUESTIONS

Give a definition for the term, "electrolyte"

Give an example of a strong base:

Give an example of a weak base:

Partial List of Solubility Rules

TABLE 4.2 Solubility Rules for Common Ionic Compounds in Water at $25^{\circ} \mathrm{C}$

Soluble Compounds	Exceptions
Halides $\left(\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right)$ Sulfates $\left(\mathrm{SO}_{4}^{2-}\right)$	Halides of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}^{2+}$, and Pb^{2+} Sulfates of $\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Hg}_{2}^{2+}$, and Pb^{2+}
Insoluble Compounds	Exceptions
Carbonates $\left(\mathrm{CO}_{3}^{2-}\right)$, phosphates $\left(\mathrm{PO}_{4}^{3-}\right)$, chromates $\left(\mathrm{CrO}_{4}^{2--}\right)$,	Compound containing alkali metal ions and sulfides $\left(\mathrm{S}^{2-}\right)$
and ammonium ion	
Hydroxides $\left(\mathrm{OH}^{-}\right)$	Compound containing alkali metal ions and the Ba^{2+} ion

Useful Information:

$M_{1} V_{1}=M_{2} V_{2}$
$N_{\mathrm{A}}=6.022 \times 10^{23}$

Periodic Table

$\begin{gathered} 1 \\ \text { IA } \end{gathered}$																	$\begin{gathered} 18 \\ \text { VIIIA } \end{gathered}$
1																	2
H	2											13	14	15	16	17	He
1.01	IIA											1 IIA	IVA	VA	VIA	VIIA	4.00
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	\mathbf{P}	S	Cl	Ar
22.99	24.31	11 B	IVB	VB	VIB	VIIB		VIIIB		IB	11 B	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	$\mathbf{M n}$	Fe	Co	Ni	Cu	$\mathbf{Z n}$	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.1	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
$\mathbf{R b}$	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	$\mathbf{R u}$	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.9	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111							
$\underset{(223)}{\mathbf{F r}}$	$\underset{\substack{\mathbf{R a} \\(226)}}{\substack{\text { an} \\ \hline}}$	$\underset{(227)}{\mathbf{A c}^{\wedge}}$	$\begin{array}{\|c} \mathbf{R f} \\ (261) \end{array}$	$\begin{gathered} \text { Db } \\ (262) \\ \hline \end{gathered}$	$\underset{(263)}{\mathbf{S g}}$	$\underset{(264)}{\mathbf{B h}}$	$\begin{gathered} \mathbf{H s} \\ (265) \\ \hline \end{gathered}$	$\underset{(268)}{\mathbf{M t}}$	$\underset{\substack{\text { Ds } \\(271)}}{ }$	$\underset{(272)}{\mathbf{R g}}$							

	$\begin{gathered} \hline 58 \\ \mathbf{C e} \\ 140.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 59 \\ \mathbf{P r} \\ 140.9 \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ \text { Nd } \\ \mathbf{1 4 4 . 2} \\ \hline \end{gathered}$	$\begin{gathered} 61 \\ \mathbf{P m} \\ (145) \\ \hline \end{gathered}$	$\begin{gathered} \hline 62 \\ \text { Sm } \\ 150,4 \end{gathered}$	$\begin{gathered} \hline 63 \\ \mathbf{E u} \\ 152.0 \\ \hline \end{gathered}$	$\begin{gathered} 64 \\ \mathbf{G d} \\ 157.3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 65 \\ \mathbf{T b} \\ 158.9 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ \hline \end{gathered}$	$\begin{gathered} 67 \\ \mathbf{H o} \\ 164.9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 68 \\ \mathbf{E r} \\ 167.3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 69 \\ \text { Tm } \\ 168.9 \\ \hline \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.0 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 175.0 \\ \hline \end{gathered}$
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
ヘ	$\underset{232.0}{\mathbf{T h}}$	$\mathbf{P a}$ (231)	$\underset{238.0}{\mathbf{U}}$	Np (237)	$\underset{(244)}{\mathbf{P u}}$	$\underset{(243)}{\operatorname{Am}}$	Cm (247)	Bk (247)	Cf	Es (252)	Fm (257)	Md (258)	$\begin{gathered} \text { No } \\ (259) \\ \hline \end{gathered}$	$\underset{(260)}{\mathbf{L r}}$

