

Lecture Presentation

Chapter 8

Periodic Properties of the Elements

© 2017 Pearson Education, Inc.

Nerve Signal Transmission

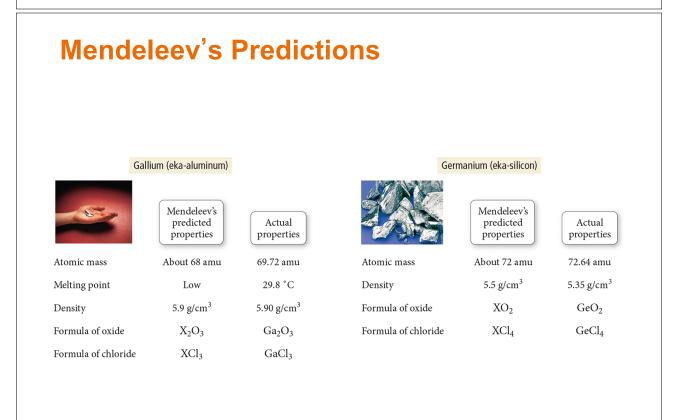
- Movement of ions across cell membranes is the basis for the transmission of nerve signals.
- Na⁺ and K⁺ ions are pumped across membranes in opposite directions through ion channels.

– Na⁺ out and K⁺ in

- The ion channels can differentiate Na⁺ from K⁺ by their difference in size.
- Ion size and other properties of atoms are periodic properties—properties whose values can be predicted based on the element's position on the periodic table.

3 Li 6.94 11 Na 22.99 19 Κ 39.10 37 Rb 85.47 55 Cs 132.91 87 Fr (223.02)

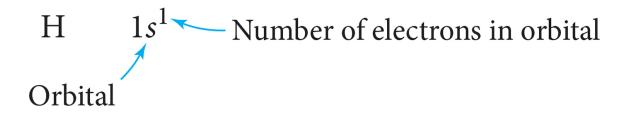
Mendeleev (1834–1907)


- Ordered elements by atomic mass
- Saw a repeating pattern of properties
- Periodic law: When the elements are arranged in order of increasing atomic mass, certain sets of properties recur periodically.

- Put elements with similar properties in the same column
- Used pattern to predict properties of undiscovered elements
- Where atomic mass order did not fit other properties, he reordered by other properties.

Te and I

© 2017 Pearson Education, Inc.


What versus Why

- Mendeleev's periodic law allows us to predict *what* the properties of an element will be based on its position on the table.
- It doesn't explain why the pattern exists.
- Quantum mechanics is a theory that explains why the periodic trends in the properties exist.
 – Knowing why allows us to predict what.

© 2017 Pearson Education, Inc.

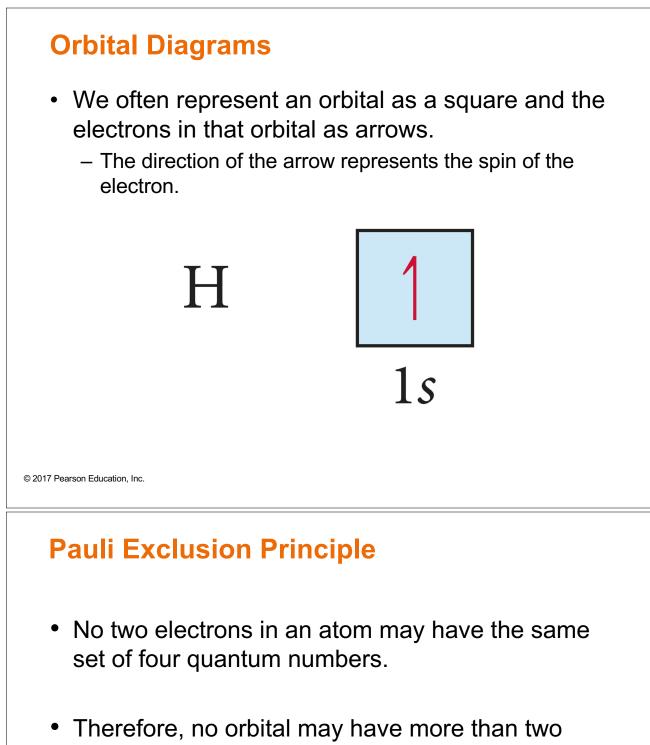
Electron Configurations

- Quantum-mechanical theory describes the behavior of electrons in atoms.
- The electrons in atoms exist in orbitals.
- A description of the orbitals occupied by electrons is called an **electron configuration**.

How Electrons Occupy Orbitals

- Calculations with Schrödinger's equation show that hydrogen's one electron occupies the lowest energy orbital in the atom.
- Schrödinger's equation calculations for multielectron atoms cannot be exactly solved.
 - Due to additional terms added for electron-electron interactions
- Approximate solutions show the orbitals to be hydrogen-like.
- Two additional concepts affect multielectron atoms: electron spin and energy splitting of sublevels.

© 2017 Pearson Education, Inc.


Electron Spin

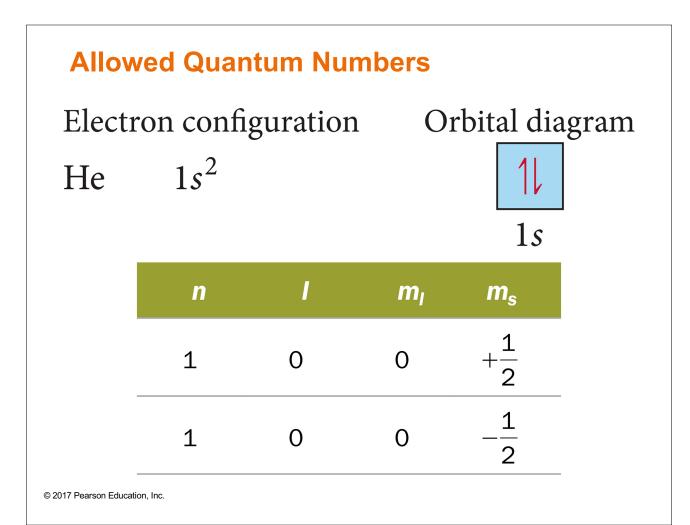
- Experiments by Stern and Gerlach showed that a beam of silver atoms is split in two by a magnetic field.
- The experiment reveals that the electrons spin on their axis.
- As they spin, they generate a magnetic field.
 - Spinning charged particles generates a magnetic field.
- If there is an even number of electrons, about half the atoms will have a net magnetic field pointing "north" and the other half will have a net magnetic field pointing "south."

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Spin Quantum Number, *m_s*, and Orbital Diagrams

- m_s can have values of $+\frac{1}{2}$ or $-\frac{1}{2}$.
- Orbital diagrams use a square to represent each orbital and a half-arrow to represent each electron in the orbital.
- By convention, a half-arrow pointing up is used to represent an electron in an orbital with spin up.
- Spins must cancel in an orbital.
 - Paired

electrons, and they must have opposite spins.


Pauli Exclusion Principle

- Knowing the number of orbitals in a sublevel allows us to determine the maximum number of electrons in the sublevel:
 - s sublevel has 1 orbital; therefore, it can hold
 2 electrons.
 - *p* sublevel has 3 orbitals; therefore, it can hold
 6 electrons.
 - *d* sublevel has 5 orbitals; therefore, it can hold 10 electrons.
 - *f* sublevel has 7 orbitals; therefore, it can hold
 14 electrons.

© 2017 Pearson Education, Inc.

Quantum Numbers of Helium's Electrons

- Helium has two electrons.
- Both electrons are in the first energy level.
- Both electrons are in the *s* orbital of the first energy level.
- Because they are in the same orbital, they must have opposite spins.

Sublevel Splitting in Multielectron Atoms

- The sublevels in each principal energy shell of hydrogen all have the same energy or other single electron systems.
- We call orbitals with the same energy **degenerate**.
- For multielectron atoms, the energies of the sublevels are split.
 - Caused by charge interaction, shielding, and penetration
- The lower the value of the *l* quantum number, the less energy the sublevel has.

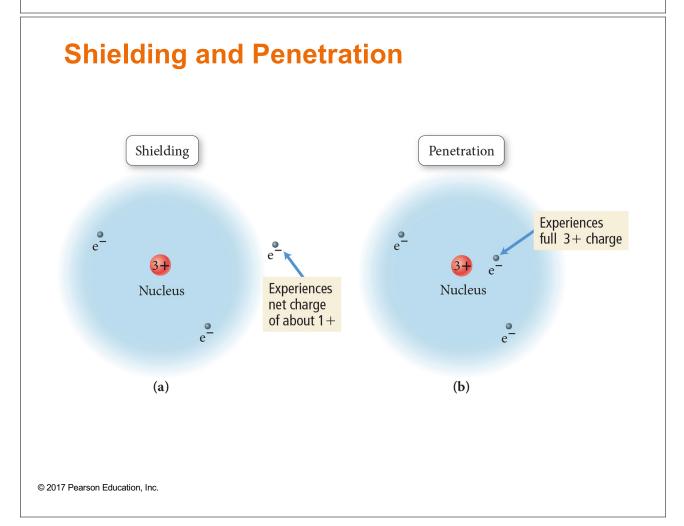
- s (l = 0)

Coulomb's Law

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$$

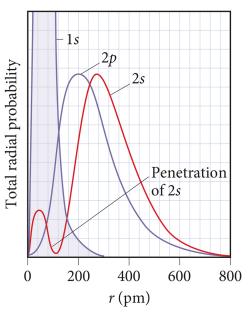
- Coulomb's law describes the attractions and repulsions between charged particles.
- For like charges, the potential energy (*E*) is positive and decreases as the particles get farther apart as *r* increases.
- For opposite charges, the potential energy is negative and becomes more negative as the particles get closer together.
- The strength of the interaction increases as the size of the charges increases.
 - Electrons are more strongly attracted to a nucleus with a 2+ charge than a nucleus with a 1+ charge.

© 2017 Pearson Education, Inc.


Shielding and Effective Nuclear Charge

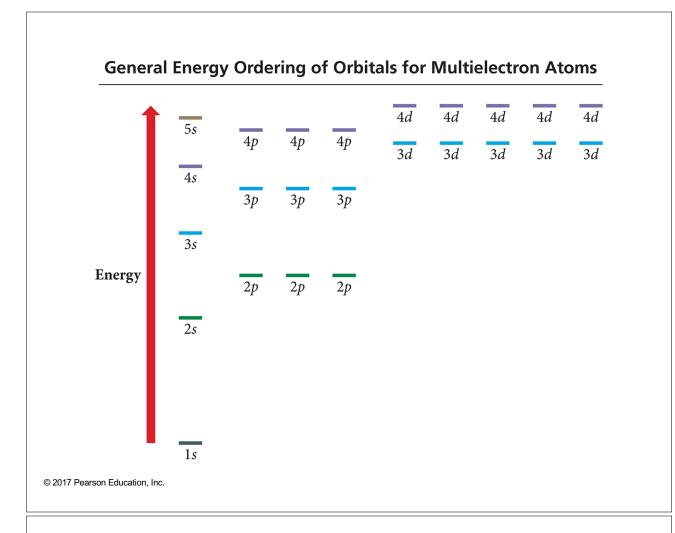
- Each electron in a multielectron atom experiences both the attraction to the nucleus and the repulsion by other electrons in the atom.
- These repulsions cause the electron to have a net reduced attraction to the nucleus; it is shielded from the nucleus.
- The total amount of attraction that an electron feels for the nucleus is called the **effective nuclear charge** of the electron.

Penetration


- The closer an electron is to the nucleus, the more attraction it experiences.
- The better an outer electron is at penetrating through the electron cloud of inner electrons, the more attraction it will have for the nucleus.
- The degree of penetration is related to the orbital's radial distribution function.
 - In particular, the distance the maxima of the function are from the nucleus

© 2017 Pearson Education, Inc.

Penetration and Shielding


- The radial distribution function shows that the 2s orbital penetrates more deeply into the 1s orbital than does the 2p.
- The weaker penetration of the 2*p* sublevel means that electrons in the 2*p* sublevel experience more repulsive force; they are more shielded from the attractive force of the nucleus.
- The deeper penetration of the 2*s* electrons means electrons in the 2*s* sublevel experience a greater attractive force to the nucleus and are not shielded as effectively.

© 2017 Pearson Education, Inc.

Effect of Penetration and Shielding

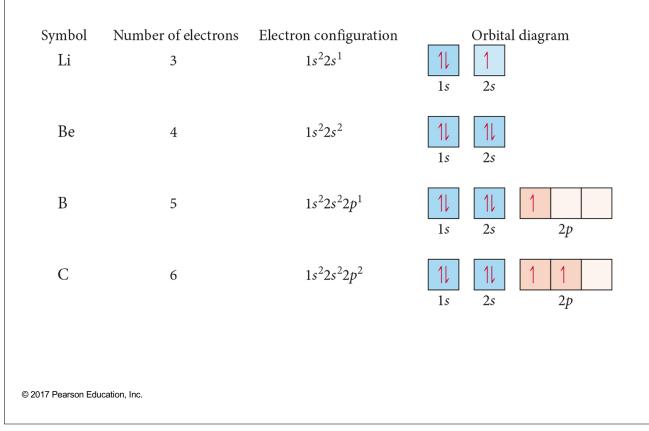
- Penetration causes the energies of sublevels in the same principal level to not be degenerate.
- In the fourth and fifth principal levels, the effects of penetration become so important that the *s* orbital lies lower in energy than the *d* orbitals of the previous principal level.
- The energy separations between one set of orbitals and the next become smaller beyond the 4s.
 - The ordering can therefore vary among elements, causing variations in the electron configurations of the transition metals and their ions.

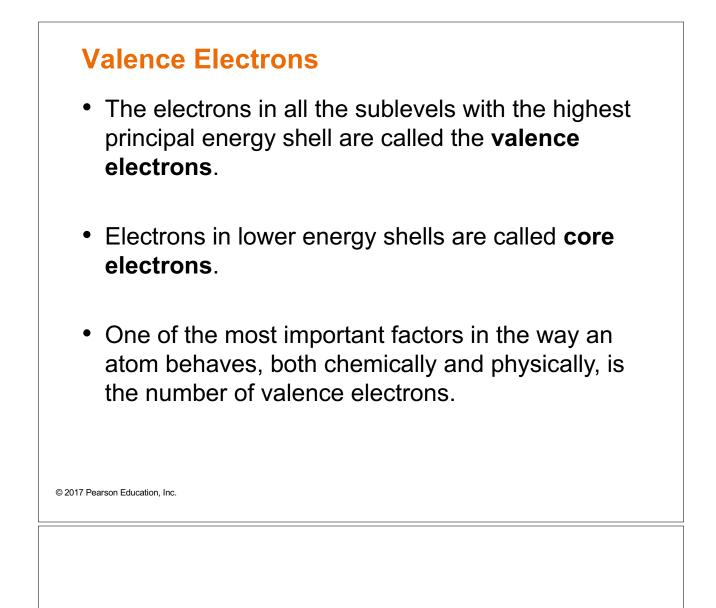
Filling the Orbitals with Electrons

- Energy levels and sublevels fill from lowest energy to highest:
 - $\quad s \to p \to d \to f$
 - Aufbau principle
- Orbitals that are in the same sublevel have the same energy.
- No more than two electrons per orbital
 - Pauli exclusion principle
- When filling orbitals that have the same energy, place one electron in each before completing pairs.
 - Hund's rule

Electron Configuration of Atoms in Their Ground State

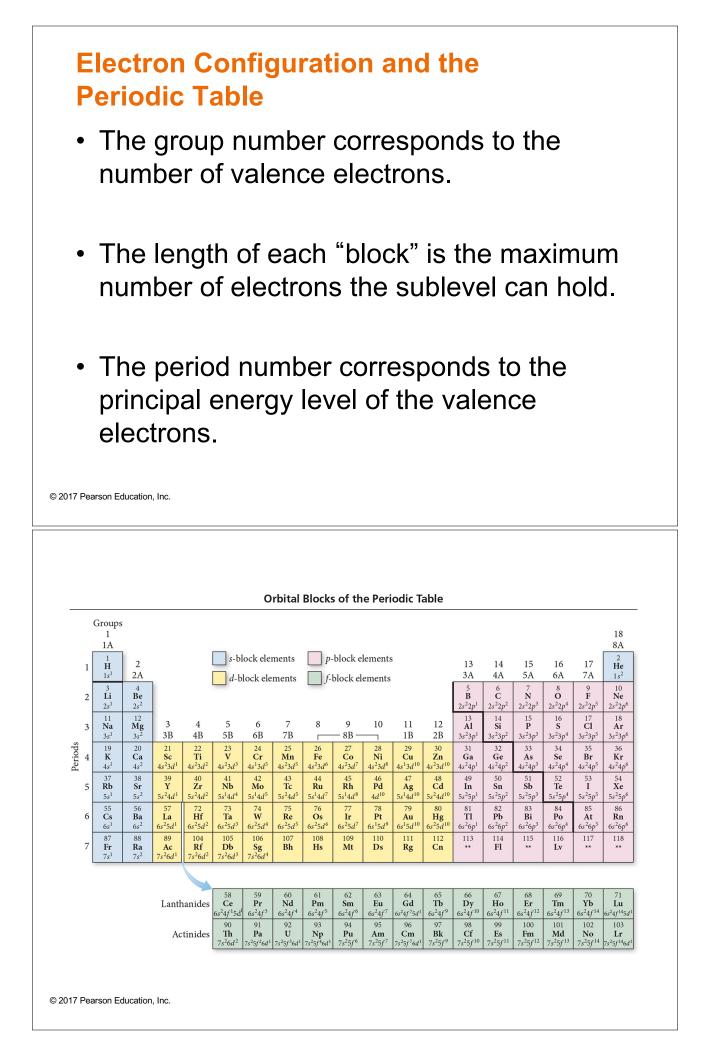
• The electron configuration is a listing of the sublevels in order of filling with the number of electrons in that sublevel written as a superscript.

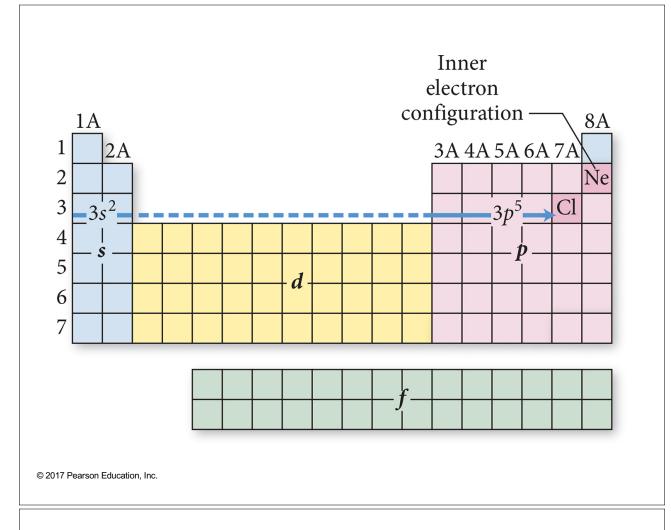

Kr = 36 electrons = $1s^22s^22p^63s^23p^64s^23d^{10}4p^6$


 A short-hand way of writing an electron configuration is to use the symbol of the previous noble gas in brackets [] to represent all the inner electrons and then just write the last set.

Rb = 37 electrons = $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^1 = [Kr]5s^1$

© 2017 Pearson Education, Inc.


Electron Configurations



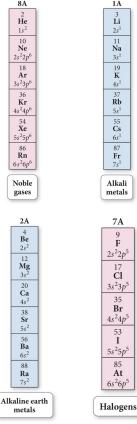
1A							8A
$1 \\ \mathbf{H} \\ 1s^{1}$	2A	3A	4A	5A	6A	7A	2 He $1s^2$
3 Li $2s^1$	$4 \\ \mathbf{Be} \\ 2s^2$	$\begin{bmatrix} 5 \\ \mathbf{B} \\ 2s^2 2p^1 \end{bmatrix}$	$\begin{array}{c} 6 \\ \mathbf{C} \\ 2s^2 2p^2 \end{array}$	$ \begin{array}{c} 7 \\ \mathbf{N} \\ 2s^2 2p^3 \end{array} $	8 O $2s^22p^4$	9 F $2s^2 2p^5$	$ \begin{array}{c} 10 \\ \mathbf{Ne} \\ 2s^2 2p^6 \end{array} $
11 Na 3s ¹	$12 \\ Mg \\ 3s^2$	$ \begin{array}{c} 13\\ \textbf{Al}\\ 3s^23p^1 \end{array} $	$ \begin{array}{r} 14 \\ \mathbf{Si} \\ 3s^2 3p^2 \end{array} $	15	16	17	18

Outer Electron Configurations of Elements 1–18

Irregular Electron Configurations

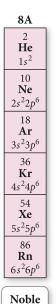
- We know that, because of sublevel splitting, the 4s sublevel is lower in energy than the 3d; therefore, the 4s fills before the 3d.
- But the difference in energy is not large.
- Some of the transition metals have irregular electron configurations in which the *ns* only partially fills before the (*n*-1)*d* or doesn't fill at all.
- Therefore, their electron configuration must be found experimentally.

Irregular Electron Configurations


- Expected
- Cr = $[Ar]4s^23d^4$
- Cu = $[Ar]4s^23d^9$
- Mo = [Kr] $5s^24d^4$
- Ru = [Kr] $5s^24d^6$
- $Pd = [Kr]5s^24d^8$

- Found experimentally
- $Cr = [Ar]4s^{1}3d^{5}$
- Cu = $[Ar]4s^{1}3d^{10}$
- Mo = [Kr] $5s^{1}4d^{5}$
- Ru = [Kr] $5s^{1}4d^{7}$
- $Pd = [Kr]5s^{0}4d^{10}$

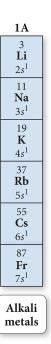
© 2017 Pearson Education, Inc.


Properties and Electron Configuration

- The properties of the elements follow a periodic pattern.
 - Elements in the same column have similar properties.
 - The elements in a period show a pattern that repeats.
- The quantum-mechanical model explains this because the number of valence electrons and the types of orbitals they occupy are also periodic.

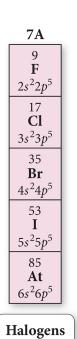
The Noble Gas Electron Configuration

- The noble gases have eight valence electrons.
 - Except for He, which has only two electrons
- They are especially nonreactive.
 He and Ne are practically inert.
- The reason the noble gases are so nonreactive is that the electron configuration of the noble gases is especially stable.


gases

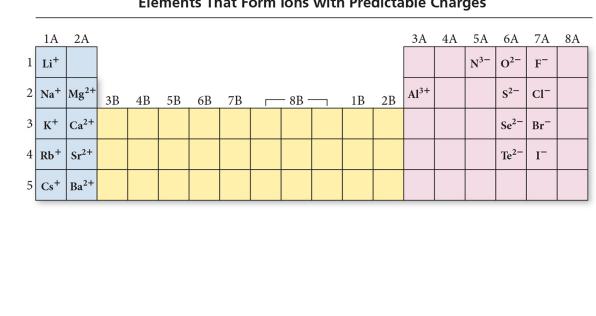
© 2017 Pearson Education, Inc.

The Alkali Metals


- The alkali metals have one more electron than the previous noble gas.
- In their reactions, the alkali metals tend to lose one electron, resulting in the same electron configuration as a noble gas.

- Forming a cation with a 1+ charge

The Halogens


- Have one fewer electron than the next noble gas
- In their reactions with metals, the halogens tend to gain an electron and attain the electron configuration of the next noble gas, forming an anion with charge 1–.
- In their reactions with nonmetals, they tend to share electrons with the other nonmetal so that each attains the electron configuration of a noble gas.

© 2017 Pearson Education, Inc.

Electron Configuration and Ion Charge

- We have seen that many metals and nonmetals form one ion and that the charge on that ion is predictable based on its position on the periodic table.
 - Group 1A = 1+, group 2A = 2+, group 7A = 1-, group 6A = 2-, etc.
- These atoms form ions that will result in an electron configuration that is the same as the nearest noble gas.

Elements That Form Ions with Predictable Charges

Electron Configuration of Anions in Their Ground State

- Anions are formed when nonmetal atoms gain enough electrons to have eight valence electrons.
 - Filling the s and p sublevels of the valence shell
- The sulfur atom has six valence electrons. S atom = $1s^22s^22p^63s^23p^4$
- To have eight valence electrons, sulfur must gain two more.

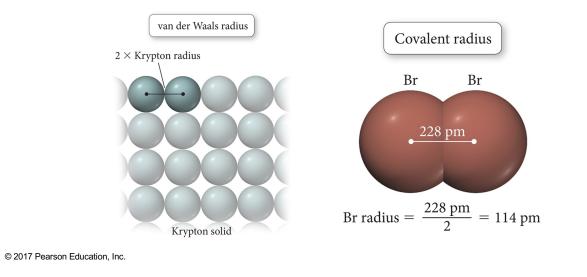
 S^{2-} anion = $1s^22s^22p^63s^23p^6$

© 2017 Pearson Education, Inc.

Electron Configuration of Cations in Their Ground State

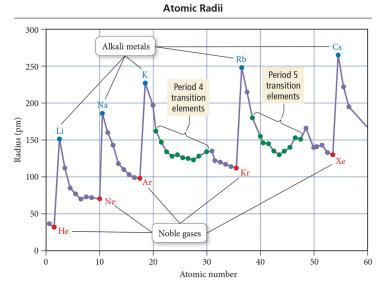
 Cations are formed when a metal atom loses all its valence electrons, resulting in a new lower energy level valence shell.

- However, the process is always endothermic.


- The magnesium atom has two valence electrons.
 Mg atom = 1s²2s²2p⁶3s²
- When magnesium forms a cation, it loses its valence electrons.

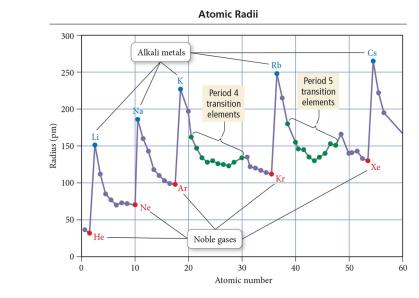
 Mg^{2+} cation = $1s^22s^22p^6$

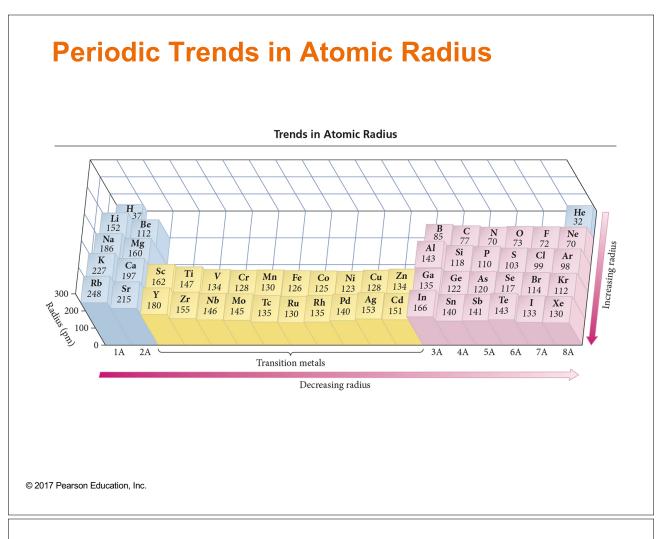
© 2017 Pearson Education, Inc.


Trend in Atomic Radius: Main Group

- There are several methods for measuring the radius of an atom, and they give slightly different numbers.
 - Van der Waals radius = nonbonding
 - Covalent radius = bonding radius
 - Atomic radius is an average radius of an atom based on measuring large numbers of elements and compounds.

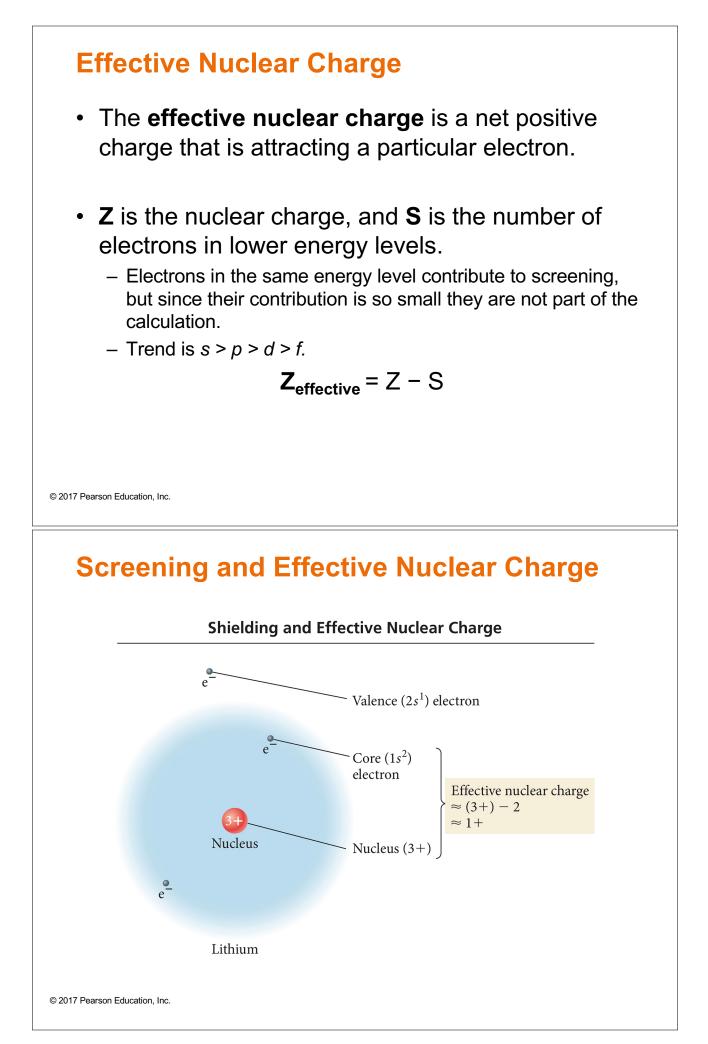
Trend in Atomic Radius: Main Group


- Atomic radius decreases across period (left to right).
 - Adding electrons to same valence shell
 - Effective nuclear charge increases
 - Valence shell held closer


© 2017 Pearson Education, Inc.

Trend in Atomic Radius: Main Group

- Atomic radius increases down group.
 - Valence shell farther from nucleus
 - Effective nuclear charge fairly close



© 2017 Pearson Education, Inc.

Shielding

- In a multielectron system, electrons are simultaneously attracted to the nucleus and repelled by each other.
- Outer electrons are *shielded* from the nucleus by the core electrons.
 - Screening or shielding effect
 - Outer electrons do not effectively screen for each other.
- The shielding causes the outer electrons to *not* experience the full strength of the nuclear charge.

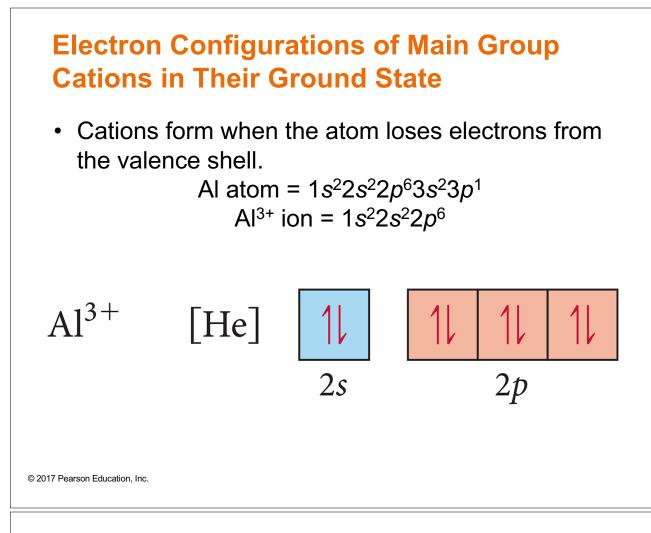
Quantum-Mechanical Explanation for the Group Trend in Atomic Radius

- The size of an atom is related to the distance the valence electrons are from the nucleus.
- The larger the orbital an electron is in, the farther its most probable distance will be from the nucleus and the less attraction it will have for the nucleus.

© 2017 Pearson Education, Inc.

Quantum-Mechanical Explanation for the Group Trend in Atomic Radius

- Traversing down a group adds a principal energy level.
- The larger the principal energy level an orbital is in, the larger its volume.
- Quantum-mechanics predicts the atoms should get larger down a column.


Quantum-Mechanical Explanation for the Period Trend in Atomic Radius

- The larger the effective nuclear charge an electron experiences, the stronger the attraction it will have for the nucleus.
- The stronger the attraction the valence electrons have for the nucleus, the closer their average distance will be to the nucleus.
- Traversing across a period increases the effective nuclear charge on the valence electrons.
- Quantum-mechanics predicts the atoms should get smaller across a period.

© 2017 Pearson Education, Inc.

Trends in Atomic Radius: Transition Metals

- Atoms in the same group increase in size down the column.
- Atomic radii of transition metals are roughly the same size across the *d* block.
 - Much less difference than across main-group elements
 - Valence shell ns^2 , not the (n-1)d electrons
 - Effective nuclear charge on the *ns*² electrons approximately the same

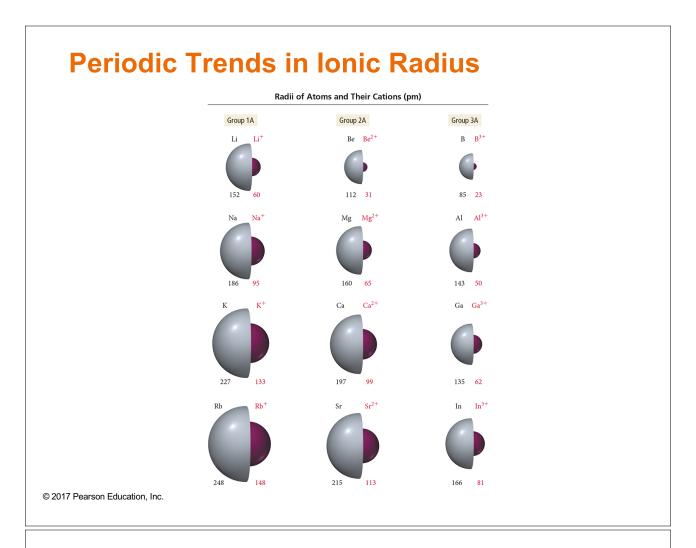
Electron Configurations of Transition Metal Cations in Their Ground State

- When transition metals form cations, the first electrons removed are the valence electrons, even though other electrons were added after.
- Electrons may also be removed from the sublevel closest to the valence shell after the valence electrons.
- The iron atom has two valence electrons: Fe atom = 1s²2s²2p⁶3s²3p⁶4s²3d⁶
- When iron forms a cation, it first loses its valence electrons:

Fe²⁺ cation = $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$ _{Fe³⁺ [Ar]}

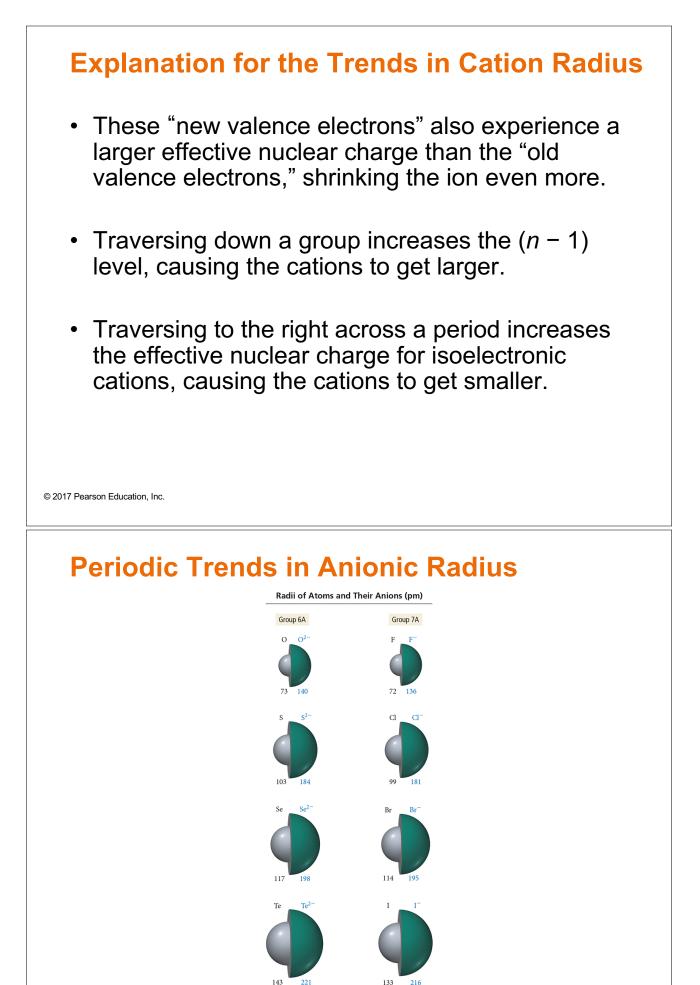
 It can then lose 3d electrons: Fe³⁺ cation = 1s²2s²2p⁶3s²3p⁶3d⁵

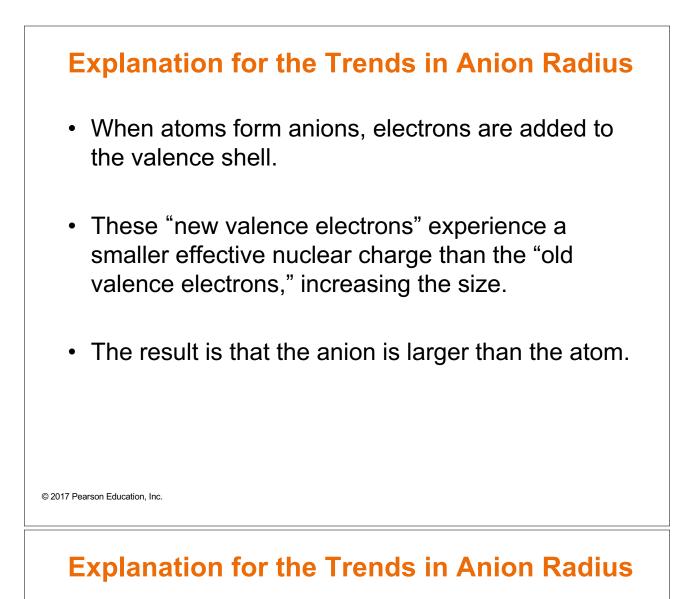
Magnetic Properties of Transition Metal Atoms and Ions


- Electron configurations that result in unpaired electrons mean that the atom or ion will have a net magnetic field; this is called **paramagnetism**.
 - Will be attracted to a magnetic field
- Electron configurations that result in all paired electrons mean that the atom or ion will have no magnetic field; this is called **diamagnetism**.

- Slightly repelled by a magnetic field

© 2017 Pearson Education, Inc.

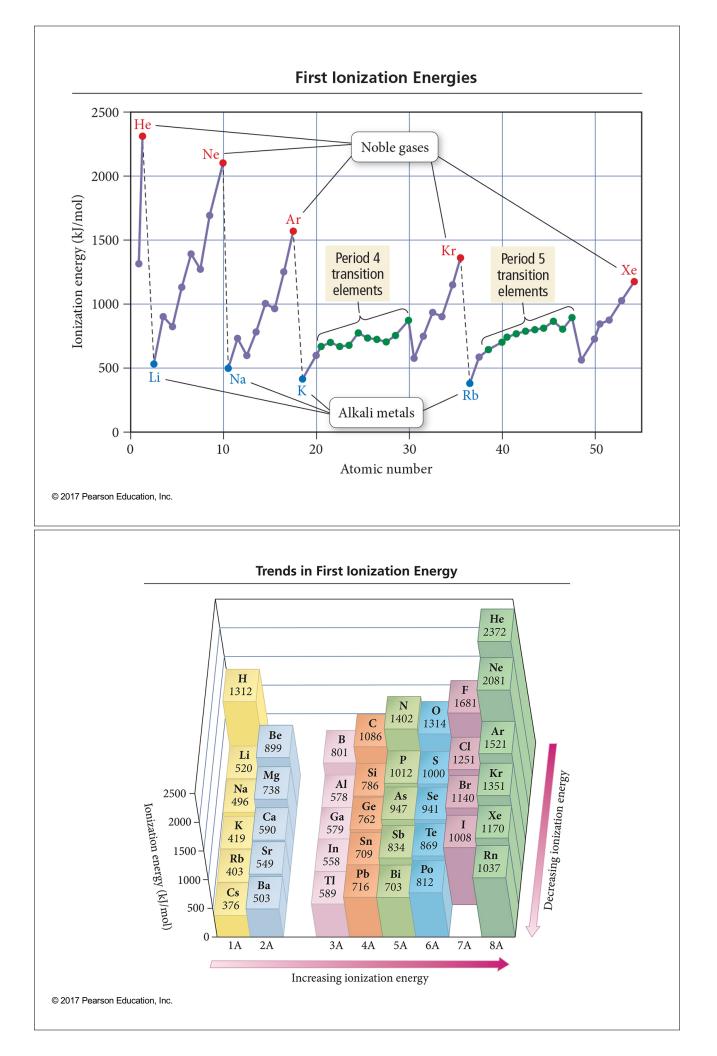

Trends in Ionic Radius


- lons in the same group have the same charge.
- Ion size increases down the column.
 Higher valence shell, larger ion
- Cations are smaller than neutral atoms; anions are larger than neutral atoms.
- Cations are smaller than anions.
 - Except Rb⁺ and Cs⁺, bigger or same size as F⁻ and O²⁻
- Larger positive charge = smaller cation
 - For isoelectronic species
 - Isoelectronic = same electron configuration
- Larger negative charge = larger anion
 - For isoelectronic species

Explanation for the Trends in Cation Radius

- When atoms form cations, the valence electrons are removed.
- The farthest electrons from the nucleus are the *p* or *d* electrons in the (*n* 1) energy level.
- This results in the cation being smaller than the atom.

- Traversing down a group increases the *n* level, causing the anions to get larger.
- Traversing to the right across a period decreases the effective nuclear charge for isoelectronic anions, causing the anions to get larger.

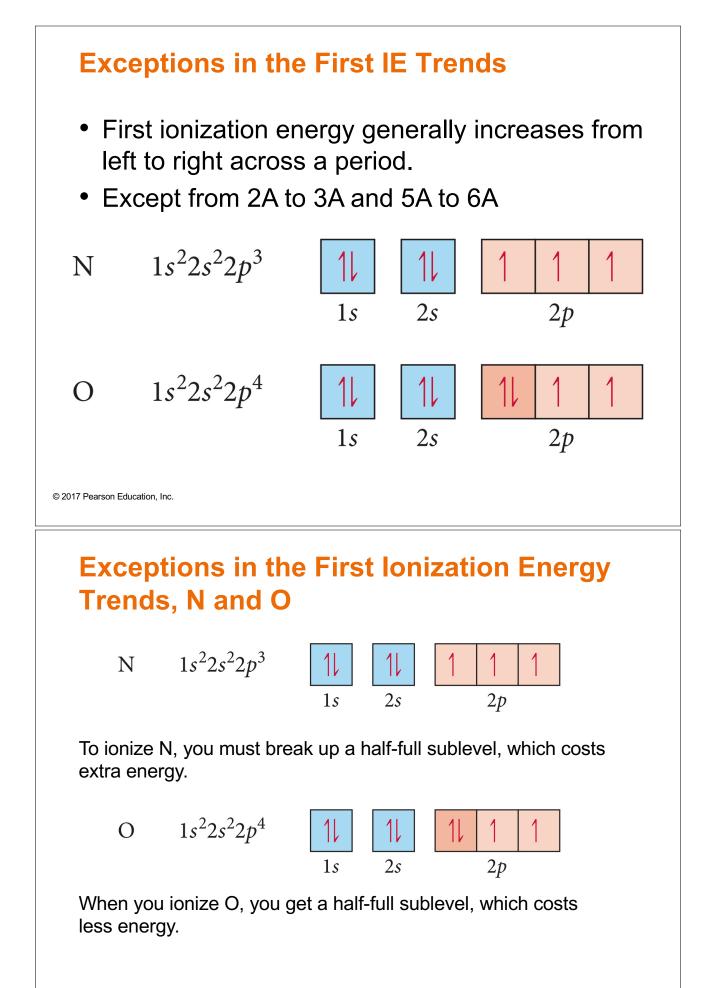

Ionization Energy (IE)

- Minimum energy needed to remove an electron from an atom or ion
 - Gas state
 - Endothermic process
 - Valence electron easiest to remove, lowest IE
 - M(g) + IE₁ \rightarrow M¹⁺(g) + 1 e⁻
 - M⁺¹(g) + IE₂ \rightarrow M²⁺(g) + 1 e⁻
 - First ionization energy = energy to remove electron from neutral atom
 - Second IE = energy to remove electron from 1+ ion, etc.

© 2017 Pearson Education, Inc.

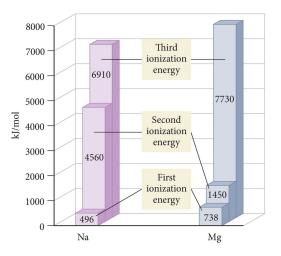
General Trends in First Ionization Energy

- The larger the effective nuclear charge on the electron, the more energy it takes to remove it.
- The farther the most probable distance the electron is from the nucleus, the less energy it takes to remove it.
- First IE *decreases* down the group.
 - Valence electron farther from nucleus
- First IE generally increases across the period.
 - Effective nuclear charge increases


Explanation for the Trends in First Ionization Energy

- The strength of attraction is related to the most probable distance the valence electrons are from the nucleus and the effective nuclear charge the valence electrons experience.
- The larger the orbital an electron is in, the farther its most probable distance will be from the nucleus and the less attraction it will have for the nucleus.
- Quantum-mechanics predicts the atom's first ionization energy should get lower down a column.

© 2017 Pearson Education, Inc.


Explanation for the Trends in First Ionization Energy

- Traversing across a period increases the effective nuclear charge on the valence electrons.
- Quantum-mechanics predicts the atom's first ionization energy should get larger across a period.

Trends in Successive Ionization Energies

- Removal of each successive electron costs more energy.
 - Shrinkage in size due to having more protons than electrons
 - Outer electrons closer to the nucleus; therefore harder to remove
- There's a regular increase in energy for each successive valence electron.
- There's a large increase in energy when core electrons are removed.

© 2017 Pearson Education, Inc.

Trends in Second and Successive Ionization Energies

TABLE	TABLE 8.1 Successive Ionization Energies for the Elements Sodium through Argon (kJ/mol)								
Element	IE ₁	IE ₂	IE ₃	IE ₄	IE ₅	IE ₆	IE ₇		
Na	496	4560							
Mg	738	1450	7730		Core e	lectrons			
Al	578	1820	2750	11,600					
Si	786	1580	3230	4360	16,100				
P	1012	1900	2910	4960	6270	22,200			
s	1000	2250	3360	4560	7010	8500	27,100		
CI	1251	2300	3820	5160	6540	9460	11,000		
Ar	1521	2670	3930	5770	7240	8780	12,000		

Electron Affinity

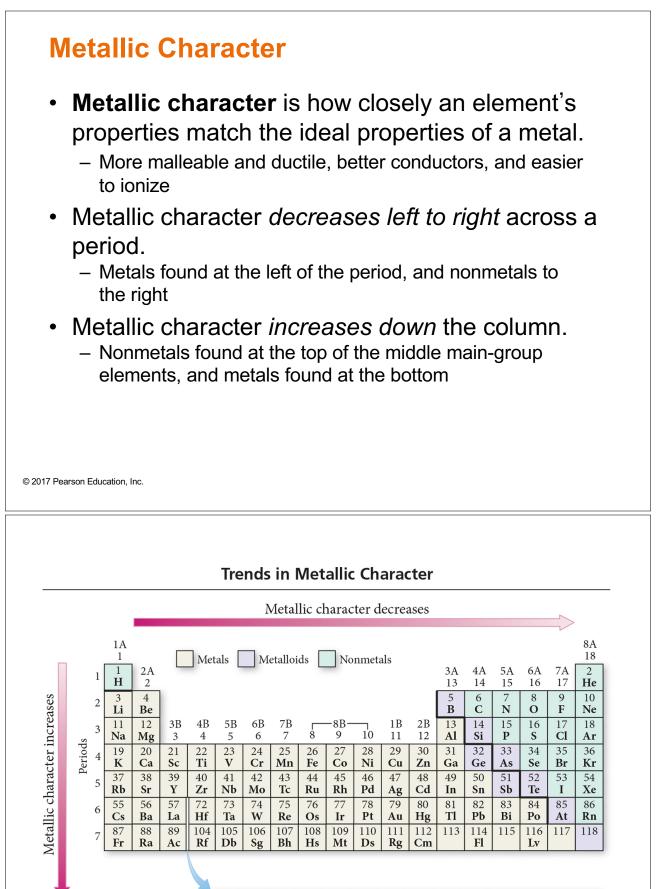
- Energy is released when a neutral atom gains an electron.
 - Gas state

- M(g) + 1e⁻ \rightarrow M¹⁻(g) + EA

- Electron affinity is defined as exothermic (-) but may actually be endothermic (+).
 - Some alkali earth metals and all noble gases are endothermic. Why?
- The more energy that is released, the larger the electron affinity.
 - The more negative the number, the larger the EA.

© 2017 Pearson Education, Inc.

Trends in Electron Affinity


- Alkali metals decrease electron affinity down the column.
 - But not all groups do
 - Generally irregular increase in EA from second period to third period
- "Generally" increases across period
 - Becomes more negative from left to right
 - Not absolute
 - Group 5A generally lower EA than expected because extra electron must pair
 - Groups 2A and 8A generally very low EA because added electron goes into higher energy level or sublevel
- Highest EA in any period = halogen

	Electron Affinities (kJ/mol)								
1A							8A		
H -73	2A	3A	4A	5A	6A	7A	He >0		
Li -60	Be >0	B -27	C -122	N >0	O -141	F -328	Ne >0		
Na -53	Mg >0	Al -43	Si -134	Р -72	S -200	Cl -349	Ar >0		
K -48	Ca -2	Ga -30	Ge -119	As -78	Se -195	Br -325	Kr >0		
Rb -47	Sr −5	In -30	Sn -107	Sb -103	Te -190	I -295	Xe >0		

© 2017 Pearson Education, Inc.

Properties of Metals and Nonmetals

- Metals
 - Malleable and ductile
 - Shiny, lustrous, reflect light
 - Conduct heat and electricity
 - Most oxides basic and ionic
 - Form cations in solution
 - Lose electrons in reactions—oxidized
- Nonmetals
 - Brittle in solid state
 - Dull, nonreflective solid surface
 - Electrical and thermal insulators
 - Most oxides are acidic and molecular
 - Form anions and polyatomic anions
 - Gain electrons in reactions—reduced

Lanthanides	58 Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	69 Tm	Yb	Lu
Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Explanation for the Trends in Metallic Character

- Metals generally have smaller first ionization energies, and nonmetals generally have larger electron affinities.
 - Except for the noble gases
- ∴ quantum mechanics predicts the atom's metallic character should increase down a column because the valence electrons are not held as strongly.
- ... quantum mechanics predicts the atom's metallic character should decrease across a period because the valence electrons are held more strongly and the electron affinity increases.

© 2017 Pearson Education, Inc.

Trends in the Alkali Metals

- Atomic radius increases down the column.
- · Ionization energy decreases down the column.
- Very low ionization energies
 - Good reducing agents; easy to oxidize
 - Very reactive; not found uncombined in nature
 - React with nonmetals to form salts
 - Compounds generally soluble in water ∴ found in seawater
- Electron affinity decreases down the column.
- Melting point decreases down the column.
 All very low MP for metals
- Density increases down the column.
 - Except K
 - In general, the increase in mass is greater than the increase in volume.

Alkali Metals

TABLE 8	.2 Properties of the Alka	ali Metals*			
Element	Electron Configuration	Atomic Radius (pm)	IE ₁ (kJ/mol)	Density at 25 °C (g/cm ³)	Melting Point (°C)
Li	[He] 2s ¹	152	520	0.535	181
Na	[Ne] 3s ¹	186	496	0.968	102
К	[Ar] 4s ¹	227	419	0.856	98
Rb	[Kr] 5s ¹	248	403	1.532	39
Cs	[Xe] 6s ¹	265	376	1.879	29

*Francium is omitted because it has no stable isotopes.

Reactions of the Alkali Metals with Water

Lithium

Sodium

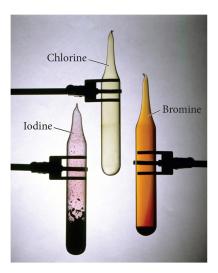
Potassium

© 2017 Pearson Education, Inc.

Trends in the Halogens

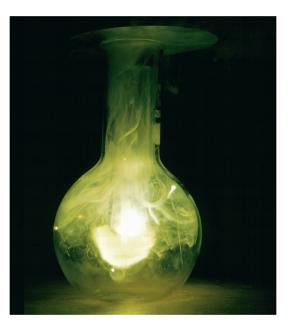
- Atomic radius increases down the column.
- Ionization energy decreases down the column.
- Very high electron affinities
 - Good oxidizing agents; easy to reduce
 - Very reactive; not found uncombined in nature
 - React with metals to form salts
 - Compounds generally soluble in water ∴ found in seawater

Trends in the Halogens


- Reactivity increases down the column.
- They react with hydrogen to form HX, acids.
- Melting point and boiling point increase down the column.
- Density increases down the column.
 - In general, the increase in mass is greater than the increase in volume.

© 2017 Pearson Education, Inc.

Halogens


TABLE 8.3 Properties of the Halogens*										
Element	Electron Configuration	Atomic Radius (pm)	EA (kJ/mol)	Melting Point (°C)	Boiling Point (°C)	Density of Liquid (g/cm ³)				
F	[He] 2s ² 2p ⁵	72	-328	-219	-188	1.51				
CI	[Ne] 3s ² 3p ⁵	99	-349	-101	-34	2.03				
Br	[Ar] 4s ² 4p ⁵	114	-325	-7	59	3.19				
I	[Kr] 5s ² 5p ⁵	133	-295	114	184	3.96				

*At is omitted because it is rare and radioactive.

Reactions of Alkali Metals with Halogens

- Alkali metals are oxidized to the 1+ ion.
- Halogens are reduced to the 1- ion.
- The ions then attach together by ionic bonds.

• The reaction is exothermic.

© 2017 Pearson Education, Inc.

Reactions of Alkali Metals with Water

- Alkali metals are oxidized to the 1+ ion.
- H_2O is split into $H_2(g)$ and OH^- ion.
- The Li, Na, and K are less dense than the water, so they float on top.
- The ions then attach together by ionic bonds.
- The reaction is exothermic, and often the heat released ignites the H₂(g).

Lithium

Reactions of the Alkali Metals with Water

© 2017 Pearson Education, Inc.

Se

Sodium

Potassium

Trends in the Noble Gases

- Atomic radius increases down the column.
- Ionization energy decreases down the column.
 Very high IE
- Very unreactive
 - Only found uncombined in nature
 - Used as "inert" atmosphere when reactions with other gases would be undesirable

© 2017 Pearson Education, Inc.

Trends in the Noble Gases

- Melting point and boiling point increase down the column.
 - All gases at room temperature
 - Very low boiling points
- Density increases down the column.
 - In general, the increase in mass is greater than the increase in volume.

Noble Gases

TABLE 8.4 Properties of the Noble Gases*									
Element	Electron Configuration	Atomic Radius (pm)**	IE ₁ (kJ/mol)	Boiling Point (K)	Density of Gas (g/L at STP)				
Не	1s ²	32	2372	4.2	0.18				
Ne	[He] 2s ² 2p ⁶	70	2081	27.1	0.90				
Ar	[Ne] 3s ² 3p ⁶	98	1521	87.3	1.78				
Kr	$[Ar] 4s^2 4p^6$	112	1351	119.9	3.74				
Xe	[Kr] 5s ² 5p ⁶	130	1170	165.1	5.86				

*Radon is omitted because it is radioactive.

**Since only the heavier noble gases form compounds, covalent radii for the smaller noble gases are estimated.

© 2017 Pearson Education, Inc.