
2012		
ou have on the scantron sheet.		
to the multip	le choice questions or	the scantron
ty? lume	d) flammability	e) mass
erty? elting point	d) density	e) volume
nne	d) liter	e) kilogram
no	d) pico	e) femto
es. This means t	hat the true measureme	ent is in the range:
54 .0 – 34.1 mL	d) 34.1 – 34.2 mL	e) 34 – 35 mL
		\ 7
ł	d) 6	e) 7
)	d) 9.0 x 10 ⁻¹	e) 9.0 x 10 ⁻²
	2012 n 1A ou have on the to the multipart erty? lume erty? elting point nne no es. This means to 74.0 – 34.1 mL 0.003020 mol com	n 1A ou have on the scantron sheet. to the multiple choice questions or ty? d) flammability erty? d) flammability erty? elting point d) density nne d) liter no d) pico es. This means that the true measurement u.0 – 34.1 mL d) 34.1 – 34.2 mL 0.003020 mol contain? d) 6

Q8. A chemist was throwing darts at a board, aiming for the bulls-eye (center). The following set of throws could be considered to be:

- b) accurate but not precise
- d) not accurate and not precise

Q9. The approximate size (c a) 1.0 x 10 ⁻¹⁵ m	,	c) 1.0 x 10 ⁻⁵ m	d) 1.0 m	e) 1.0 x 10 ⁵ m
Q10. How many protons are a) 5	e contained in an atom b) 11	of bromine-79? c) 35	d) 79	e) 80
Q11. An example of a metal a) silicon	loid is: b) sulfur	c) xenon	d) uranium	e) cesium
Q12. Which of these elemena) lithium	nts exists as a diatomic s b) titanium	molecule in nature? c) iodine	d) phosphorus	e) argon
Q13. How many electrons a a) 10	re in the Al ³⁺ ion? b) 13	c) 16	d) 25	e) 28
Q14. What is the correct name a) copper monosulfa d) copper(II) sulfate	ite	b) copper sulfate e) cuprous sulfate	c) copper(I) sulfate	
Q15. What is the correct for a) NH ₃	mula for methane? b) PH ₃	c) CH ₄	d) H ₂ SO ₄	e) HCl

Short Response.

Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and write your answers using the correct number of significant figures or decimal places.

Q16. [12 pts.] Convert a concentration of 0.31 μ g/cm³ to units of mg/in³. *Note: 1 in = 2.54 cm exactly.*

Q17. [6 pts.] Compute the following to the correct number of significant figures / decimal places:

a) 0.021 x 13.1 = _____

b) 12.33 – 11.23 = _____

Q18. [6 pts.] Gold has a density of 19.3 g/cm³. What mass of gold would have a volume of 42.0 cm³?

Q19. [10 pts.] Write formulas for the following compounds:
a) trisulfur heptafluoride
b) lead(IV) sulfate
c) sodium acetate
d) magnesium nitrite
e) pentanitrogen decoxide
Q20. [10 pts.] Name the following compounds:
a) MgCO ₃
b) P ₂ N ₈
c) Fe(HCO ₃) ₃
d) Ca ₃ (PO ₄) ₂ · 4H ₂ O
e) Cl ₃ I ₉
Q21. [4 pts.] What is the empirical formula of $C_6H_3Cl_3$?

Q22. [7 pts.] How many protons, neutrons, and electrons are there in the common ION of bromine-81?

18 2 He 10 Ne	18 Ar 39.95 36 Kr	83.80 54 54 Xe 131.29 86 Rn (222)	
17 17 17	Br 33.45	79.90 53 I 126.9 85 85 At (210)	71 Lu 175.0 103 Lr
16 VIA 8 0	16 S 32.07 34 Se	78.96 52 Te 127.6 84 84 (209)	70 Yb 173.0 102 No (259)
15 × × ×	15 15 P 30.97 33 33 As	74.92 51 51 80 121.76 83 83 83 83 83	69 Tm 168.9 101 (258)
C ∘ [4	14 Si 28.09 32 Ge	72.61 50 50 80 118.71 82 82 Pb 207.2	68 Er 167.3 100 Fm (257)
13 s 13	13 AI 26.98 31 31	69.72 49 114.82 81 T 204.4	67 Ho 164.9 99 ES
	30 38 ∎ 30 Z n	65.39 48 48 Cd 112.41 80 Hg 200.6	66 Dy 98 Cf (251)
	11 29 Cu	63.55 47 Ag 107.87 79 Au 197.0	111 Rg (272) 65 97 97 97 (247)
	10 28 Ni	58.69 46 Pd 106.42 78 Pt 195.1	110 Ds Ds 64 64 157.3 96 Cm (247)
	9 VIIIB 27	58.93 45 Rh 102.91 17 Ir 192.2	109 Mt (268) 63 63 63 Eu 152.0 95 95 (243)
	8 26 Fe	55.85 44 Ru 101.07 76 Os 190.2	108 Hs (265) 62 82 8 94 94 Pu (244)
	7 VIIB 25 Mn	54.94 43 Tc (98) 75 Re 186.2	107 Bh (264) 61 81 (145) 93 87 Np
	6 Cr 24	52.00 42 Mo 95.94 74 W	106 Sg (263) 60 60 80 92 92 92 92 92 80 238.0
	5 VB 23	50.94 41 Nb 92.91 73 73 180.9	105 Db 59 91 91 Pa (231)
	4 IVB 22	47.88 40 Zr 91.22 72 Hf 178.5	104 Rf 58 58 799 99 232.0
	3 21 Sc	44.96 39 Y 88.91 57 La* 138.9	89 AC^ (227)
2 Be 4 B	¹² Mg ^{24,31} ²⁰	40.08 38 87.62 56 Ba 137.3	88 Ra (226)
I I I I I I I I	11 Na 22.99 I9 K	39.1 37 Rb 85.47 55 Cs 132.9	87 Fr (223)

Periodic Table