Chem 1141 Fall 2012 Exam 3A

Name:

Please write your full name, and which exam version (3A) you have on the scantron sheet.

Multiple Choice. [3 points each.] Record your answers to the multiple choice questions on the scantron sheet.

Q1. Which element exists as a diatomic gas in its most stable form at 1 atm and 25 °C?										
	a) helium	b) carbon	c) sulfur	d) nitrogen	e) argon					
Q2. 1	The pressure of a	gas at STP is:		N						
	a) 1 atm	b) 1 Pa	c) 1 mmHg	d) 1 torr	e) 1 N					
Q3. The law that states that the pressure of a gas is inversely proportional to volume is:										
	a) Avogadro's	b) Boyle's	c) Charles'	d) Gay Lussac'	s e) Newton's					

Q4. In the van der Waals equation for a gas, what does the constant b account for?

- a) The tendency of the molecules to stick together
- b) The molecules can be cooled down to form a liquid
- c) The temperature conversion from degrees celcius to Kelvin
- d) The molecules are not all diatomic
- e) The molecules have size

Q5. Given the following thermochemical equation:

 $\begin{array}{ll} H_2O(s) \rightarrow H_2O(l) & \Delta H^o = +6.01 \text{ kJ/mol} \\ \text{calculate the value of } \Delta H^o \text{ for the following reaction:} \\ 2H_2O(l) \rightarrow 2H_2O(s) & \Delta H^o = ??? \end{array}$

a) -6.01 kJ/mol	b) –12.02 kJ/mol	c) +6.01 kJ	/mol							
d) +12.02 kJ/mol	e) 36.1 kJ/mol									
Q6. A reaction with a negative value of ΔH is said to be:										
a) Exogonic	b) Endergonic	c) Exothermic	d) Endothermic							

Q7. Given the thermochemical equation:

 $2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(l) \quad \Delta H^\circ = -2598.8 \text{ kJ/mol}$ Then how much heat will be released when 3 mol of C_2H_2 is burned?

a) 2598.8 kJ	b) 866 kJ	c) 7796.4 kJ	d) 1732.5 kJ	e) 3898.2 kJ
u) =070.0 mj	6) 000 Hj	c) / / 20.1 mj	a) 175 <u>–</u> 10 hj	e) 5070.2 hj

Q8. ′	The reaction corre	esponding to th	e standard enth	alpy of formatio	on of trinitrotoluene, $C_6H_3N_3O_3(s)$ is:								
	a) $C_6H_3N_3O_3(s) \rightarrow 6C(s) + 3H(g) + 3N(g) + 3O(g)$												
	b) 6C(s, graphite) + H ₃ (g) + N ₃ (g) + O ₃ (g) \rightarrow C ₆ H ₃ N ₃ O ₃ (s)												
	c) 6C(s, graphi	$(te) + \frac{3}{2} H_2(g) +$	$-\frac{3}{2}N_2(g) + O_3(g)$	$(g) \rightarrow C_6H_3N_3O$	¹ 3(S)								
	d) 6C(s. graph	$(1 + \frac{3}{2} + \frac{3}{2}) + \frac{3}{2}$	$-\frac{3}{2}N_{2}(g) + \frac{3}{2}$	$D_2(p) \rightarrow C_6H_3N$	$(3O_3(s))$								
	e) 12C(s. graph	nite) + 3 $H_2(g)$ -	$+ 3 N_2(g) + 3 O$	$f_2(g) \rightarrow 2 C_6 H_3 N$	$J_3O_3(s)$								
00 5	с) с(с, 8-ер-		1()	2(8) , = 0,0000									
Q9	The term given to	b) Doutielo	sht is a(n):	d) algetra	a) ab ata a								
	a) wave	b) Particle	c) proton	d) electron	e) photon								
Q10.	10. The expression used to calculate the probability of an electron in space:												
	a) ψ	b) ψ ²	c) ψ ³	d) ψ ⁴	e) 1/ψ								
Q11.	The name given	to the quantum	number, l										
	a) principal quan	itum number	,	b) electron-spi	n quantum number								
	c) angular mome	entum quantum	number	d) magnetic quantum number									
012.	The electron cor	figuration for a	n atom of Cr is:	:									
Q12.	a) [He] $2s^22p^2$	b) [Ne] $3d^4$	c) [Ar] $4s^23d^4$	d) [Ar] 4s ¹ 3d ⁵	e) [Ar] 3d ⁷								
Q13.	The principle that	at says that the e	electrons in an a	tom prefer to e	nter orbitals in the same subshell with parallel								
	spins, before pai	ring up:		Ĩ	-								
	a) Hund's rule		b) Paramagnet	ic rule	c) Pauli's exclusion rule								
	d) Bohr's condit	ion			e) Schrödinger's equation								
Q14.	What is the oxid	ation number o	f N is the comp	ound: KNO2?									
	a) +5	b) +3	c) –1	d) –3	e) -5								
015	Which SI prefix	means x10 ⁻⁹ 2		-									
Q13.	a) II	h) m	c) k	d) n	e) f								
	u) p	S/ 111	C) 11	G/ 11	~) ·								

Short Response.

Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and write your answers using the correct number of significant figures or decimal places.

Q16. [8 pts.] Write the full electron configuration and orbital diagrams for the following atoms:

a) Al

b) Cu

Q17. [8 pts.] Given the following data:

$\Delta H_{\rm f}^{\rm o}$ / kJ·mol ⁻¹	+226.6	0	-393.5	-241.8
Compound	$C_2H_2(g)$	$O_2(g)$	$CO_2(g)$	$H_2O(g)$

(i) Predict ΔH° for the following reaction: $2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$

(ii) Calculate how much heat is absorbed/released (state which!) if 12.0 g of C₂H₂(g) and 15.0 g of O₂(g) react.

Q18. [8 pts.] Give a detailed explanation of how real gases differ from ideal gases.

Q19. [8 pts.] 5.0 g of Ar(g) and 5.0 g of Ne(g) is released into an empty 5.0-L container at a temperature of 17 °C. Calculate the partial pressures of each gas, the mole-fractions of each gas, and the total pressure inside the container.

Q20. [8 pts.] A 4.51 g sample of a metal at 182 °C is dropped into a calorimeter containing 43.2 g of water at 5.1 °C. Given that the water has a specific heat of 4.184 J/g·°C, and assuming that the calorimeter forms a perfectly isolated system, calculate the specific heat of the metal if the final temperature of the system is 8.4 °C.

Q21. [5 pts.] Calculate the empirical formula of a substance containing 40.1 percent carbon, 6.6 percent hydrogen, and 53.3 percent oxygen by mass.

Q22. [10 pts.] Write the molecular, full-ionic, and net-ionic equation for the reaction between aqueous sodium carbonate and aqueous magnesium nitrate.

Molecular:

Full-Ionic:

Net-Ionic:

BONUS Question

Sketch and label the five different 3d orbitals.

Quantum Mechanics

Partial List of Solubility Rules

TABLE 4.2Solubilitiesin Wate	ty Rules for Common Ionic Compounds er at 25°C					
Soluble Compounds	Exceptions					
Halides (Cl ⁻ , Br ⁻ , I ⁻)	Halides of Ag^+ , Hg_2^{2+} , and Pb^{2+}					
Sulfates (SO_4^{2-})	Sulfates of Ag^+ , Ca^{2+} , Sr^{2+} , Ba^{2+} , Hg_2^{2+} , and Pb^{2+}					
Insoluble Compounds	Exceptions					
Carbonates $(CO_3^{2^-})$, phosphates $(PO_4^{3^-})$, chromates $(CrO_4^{2^-})$, and sulfides (S^{2^-})	Compounds containing alkali metal ions and the ammonium ion					
Hydroxides (OH ⁻)	Compounds containing alkali metal ions					

Useful Information: pV = nRT $\left(p + \frac{an}{V^2}\right)(V - nb) = nRT$ 1 atm = 760 mmHg = 101325 Pa $M_1V_1 = M_2V_2$ $N_A = 6.022 \ge 10^{23}$ $q = m \cdot s.\Delta t$ $q = C \cdot \Delta t$ $R = 0.08206 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$ E = hv $c = 3.00 \ge 10^8 \text{ m/s}$ $b = 6.626 \ge 10^{-34} \text{ J} \cdot \text{s}$ $c = v\lambda$ $E_n = -R_{\rm H} \left(\frac{1}{n^2}\right)$ $\lambda = \frac{h}{mu}$ $R_{\rm H} = 2.18 \ {\rm x} \ 10^{-18} \ {\rm J}$

Periodic Table

1																	18
																	2
μ μ μ	2											13	14	15	16	17	н́о
1.01	TIA											ΠΔ	1\/4	VA	VIA	VIIA	4.00
3	4										1	5	6	7	8	9	10
Ťi	Ro											B	Č	N	Ô	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	14.01	16	17	18
Na	Μσ	3	4	5	6	7	8	9	10	11	12	AL	Si	Р	S	CI	Ar
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	-	VIIIB		IB	IIB	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.9	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111							
Fr	Ra	Ac^	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(271)	(272)							
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
		*	Ce	Pr	Nd	Pm	Sm	En	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu	
			140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0	
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		^	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	