General Chemistry 1 (CHEM 1141) Shawnee State University – Fall 2019

October 24, 2019

Exam # 2 A

Name

Please write your full name, and the exam version (2 A) that you have on the scantron sheet ! (Bubble in the best answer choice for each question on the green & white scantron sheet in pencil !)

Please ☑ check the box next to your correct section number.	Multiple Choice:	/ 50
Section Number	Q21:	/ 10
□ 1. (Monday Lab, 11:10 AM – 1:55 PM)	Q22:	/ 10
□ 2. (Wednesday Lab, 11:10 AM – 1:55 PM)	Q23:	/ 10
□ 3. (Monday Lab, 2:30 PM – 5:20 PM)	Q24:	/ 10
□ 4. (Wednesday Lab, 2:30 PM – 5:20 PM)	Q25:	/ 10
□ 5. (Thursday Lab, 12:30 PM – 3:20 PM)	BONUS:	/ 3
□ 6. (Tuesday Lab, 12:30 PM – 3:20 PM)	TOTAL:	/ 100

You are only allowed to use a TI30–XIIS or equivalent non–programmable calculator on this exam ! (This means no cell phones, no smart phones, no smart watches, no ipads, or any other such devices will be allowed !)

Q1. What is the coefficient for O_2 when the following combustion reaction of the alcohol is correctly balanced using the lowest set of whole number coefficients?

 $\underline{\qquad} CH_4O(l) + \underline{\qquad} O_2(g) \rightarrow \underline{\qquad} CO_2(g) + \underline{\qquad} H_2O(l)$

B) 5

A) 3

- **C)** 7
- **D**) 9
- **Q2.** What is the molarity of a solution formed by dissolving 97.7 g of LiBr in enough water to yield 750.0 mL of solution ?
 - **A)** 0.130 M
 - **B)** 0.768 M
 - **C)** 1.12 M
 - **D)** 1.50 M
- Q3. When dissolved in water, NaOH behaves as:
 - A) an acid that forms Na⁺ and OH⁻ ions
 - **B)** an acid that forms NaO⁻and H^+ ions
 - C) a base that forms Na^+ and OH^- ions
 - **D**) a base that forms NaO⁻and H⁺ ions

Q4. Identify the diprotic acid.

- **A)** H₂SO₄
- **B)** HCl
- C) NaCl
- **D)** Mg(OH)₂

Q5. Which of the following is an acid–base reaction?

A)
$$C(s) + O_2(g) \rightarrow CO_2(g)$$

- **B)** MgSO₄(aq) + Pb(NO₃)₂(aq) \rightarrow Mg(NO₃)₂(aq) + PbSO₄(s)
- C) $Fe(s) + 2 AgNO_3(aq) \rightarrow 2 Ag(s) + Fe(NO_3)_2(aq)$
- **D)** 2 HClO₄(aq) + Ca(OH)₂(aq) \rightarrow 2 H₂O(l) + Ca(ClO₄)₂(aq)

Q6. Aluminum reacts with hydrochloric acid as shown below in the balanced reaction equation.

$2 \operatorname{Al}(s) + 6 \operatorname{HCl}(aq) \rightarrow 2 \operatorname{AlCl}_3(aq) + 3 \operatorname{H}_2(g)$

The correct number of moles of HCl(aq) that would be required to react completely with 2.1moles of Al(s) would be ______ of HCl(aq).

- **A)** 1.6 moles
- **B)** 4.8 moles
- **C)** 6.3 moles
- **D)** 7.2 moles

Q7. What is the limiting reactant when 0.543 moles of N_2O_4 reacts with 1.05 moles of N_2H_4 ?

$N_2O_4(l) + 2 N_2H_4(l) \rightarrow 3 N_2(g) + 4 H_2O(g)$

- **A)** $N_2O_4(1)$
- **B)** N₂H₄(1)
- **C)** $N_2(g)$
- **D**) H₂O(g)
- **Q8.** What is the concentration of a solution that is prepared by adding 15.0 mL of water to 5.0 mL of 12.0 M HCl?
 - **A)** 3.00 M
 - **B)** 4.00 M
 - **C)** 12.0 M
 - **D)** 15.0 M
- Q9. Which pair of solutions listed below would form a precipitate when mixed at 25 °C?
 - A) $LiCl(aq) + Mg(NO_3)_2(aq)$
 - **B)** $NaC_2H_3O_2(aq) + NaOH(aq)$
 - C) $H_2SO_4(aq) + K_2CO_3(aq)$
 - **D)** $Ca(NO_3)_2(aq) + Na_2SO_4(aq)$

- **Q10.** What piece of glassware should be used to prepare a solution of precise concentration in the lab?
 - A) buret
 - **B)** graduated cylinder
 - C) volumetric flask
 - D) Erlenmeyer flask
- **Q11.** Which substance contains a sulfur atom with an oxidation state of +2?
 - A) SO₄²⁻
 - **B**) S₂O₃²⁻
 - C) H₂SO₄
 - D) Na₂SO₃
- Q12. Which of the following ionic compounds will be **SOLUBLE** in water?
 - A) NH₄NO₃
 - B) AgBr
 - **C)** Fe(OH)₃
 - D) CaCO₃
- **Q13.** What is the percentage (by mass) of <u>*nitrogen*</u> in Ca(NO₃)₂?
 - **A)** 13.72 % N
 - **B)** 17.07 % N
 - **C)** 24.42 % N
 - **D)** 58.50 % N

Q14. The species that is the <u>reducing agent</u> in the equation shown below would be the ______.

$2 \operatorname{Zn}(s) + \operatorname{Sn}(\operatorname{NO}_3)_2(\operatorname{aq}) \rightarrow \operatorname{Zn}(\operatorname{NO}_3)_2(\operatorname{aq}) + \operatorname{Sn}(s)$

- A) Sn(s)
- **B)** Sn(NO₃)₂(aq)
- **C)** Zn(s)
- **D**) Zn(NO₃)₂(aq)

Q15. What is the conversion factor for a 4.10 M solution of KCl?

- A) 4.10 M / 1 L
- **B)** 4.10 moles / 1 L
- **C)** 4.10 g / mL
- **D)** 1 mole / 4.10 L

Q16. Which of the following contains the *largest* number of atoms?

- A) 12 g of potassium
- **B)** 12 g of magnesium
- C) 12 g of calcium
- **D)** 12 g of iron

Q17. What is the correct formula for copper(I) carbonate dihydrate?

- **A)** CoCO₃ ¹/₂ H₂O
- **B)** Cu(CO₃)₂ H₂O
- **C)** Co₂CO₃ 2 H₂O
- **D)** Cu₂CO₃ 2 H₂O

Q18. Which of the following is an example of an extensive property?

- A) density
- **B)** temperature
- C) mass
- D) color
- **Q19.** The correct number of protons (p^+) , neutrons (n^0) , and electrons (e^-) in sodium–24 would be:
 - **A)** 11 p^+ , 24 n^0 , 11 e^-
 - **B)** 11 *p*⁺, 13 *n*⁰, 11 *e*⁻
 - **C)** 16 *p*⁺, 32 *n*⁰, 16 *e*⁻
 - **D)** 19 *p*⁺, 20 *n*⁰, 39 *e*⁻
- **Q20.** Mercury is the only metal that is a liquid at room temperature and the density of mercury is $13.6 \text{ g}/\text{cm}^3$. What is the volume of mercury in a flask that contains 848 g of mercury?
 - **A)** 16.0 mL
 - **B)** 0.624 mL
 - **C)** 6.24 mL
 - **D)** 62.4 mL

Each problem in this section (short answer) is worth 10 points ! All work must be shown in order to receive full credit ! You must use the factor-label (conversion-factor) method for all conversions ! Be sure to include units where applicable !

All numeric answers must be rounded to the correct number of significant figures !

Q21. The antacid Milk of Magnesia contains magnesium hydroxide. If 25.0 mL of stomach acid *(HCl)* reacts completely with 10.1 mL of 0.139 M Mg(OH)₂, then what is the concentration *(molarity)* of the stomach acid ?

Q22. Provide a correctly balanced reaction equation that shows the chemical reaction that takes place when an aqueous solution of silver nitrate is mixed with an aqueous solution of sodium sulfate. In addition, provide the correct full ionic as well as the net ionic equation for this reaction. Be sure to show all state symbols and charges where appropriate.

Complete Balanced Reaction Equation (Molecular Equation)

Complete Ionic Equation

Net Ionic Equation

Q23. The molecular equation for the reaction between solid iron metal and oxygen gas is shown below. Answer each of the questions listed below the reaction equation.

 $Fe(s) + O_2(g) \rightarrow Fe_2O_3(s)$

Provide a correctly balanced equation for this reaction by writing the correct coefficients in front of each reactant and product.

The correct IUPAC *(systematic)* name for the product Fe₂O₃(s) would be ______.

Show how to determine *(by calculation)* the theoretical yield of $Fe_2O_3(s)$ that could be produced if 8.05 g of Fe(s) is reacted with 3.52 g of $O_2(g)$.

The limiting reactant is

Given the above conditions, a CHEM 1141 student carries out this reaction and obtains 9.76 g of $Fe_2O_3(s)$. Show how to determine *(and then calculate)* the percent yield for this reaction.

- Q24. Answer each of the questions listed involving sodium carbonate.
 - A) What is the molar concentration of a solution that is prepared by dissolving 15.9 g of Na₂CO₃ in enough water to give a total volume of 589 mL?

B) If you had a 1.50 M solution of Na₂CO₃, what volume would contain 0.30 moles of solute in both L and mL?

C) How would you prepare 100. mL of a 0.350 M solution of Na₂CO₃ from a stock solution that is 13.0 M.

D) Write a balanced molecular equation for the reaction between aqueous solutions of Na₂CO₃ and H₂SO₄.

(Be sure to include the state symbols (s, l, g, or aq) for all reactants & products !)

Q25. From the given list of possible answers, choose the correct answer for each of the questions below.

Possible Answers

HF	HCI	solute	solvent	dilute	NaNO3	AgCl	CH4	KMnO4	MnCl ₂
Whi	ch is a st	rong acid'	?						
Whi	ch is an i	onic com	pound that	t is insolu	uble in wate	er?			
Whi	ch comp	ound cont	ains an ato	om with a	an oxidation	n state of	+7?		
Whi	ch comp	ound cont	ains an ato	om with a	an oxidation	n state of	_4?		
Whi	ch is the	greater co	omponent	in a solut	tion?				
6666	5555	ප්ර්ප්ර	<u>ර</u> ්ර්ර්	ප්ර්ර්	30000	3333	ප්ර්	666666	6666
			3 Poi	int Bo	nus Que	estion			
රුරුරු	3333	444 <i>4</i>	6666	යයය		<i>3</i> 3333	<u> </u>	<u> </u>	යයයය

What is the Arrhenius definition of an acid and base?

An Arrhenius acid is defined as:

An Arrhenius base is defined as:

Exam checklist

(Check the boxes to certify the following:)

- □ My full name is written legibly on the front page
- □ My correct lab section has been indicated on the front page
- □ My full name is written legibly on the scantron sheet
- □ My exam version (2A, 2B, 2C, or 2D) is written on the scantron sheet
- □ I have shown work for all problems (*where appropriate*), paying attention to
 - Significant figures / decimal places
 - o Units
- □ I have used the conversion–factor method for all conversions
- □ If I have torn off the back page (periodic table), I will not turn it in with my exam!

Thank-you from the Chemistry Professors and Good Luck!

N_A (Avogadro's number) = 6.022×10^{23}

TABLE 5.1 Solubility Rules for Ionic Compounds in Water										
Compounds Containing the Following Ions Are Generally Soluble	Exceptions									
Cl ⁻ , Br ⁻ , and l ⁻	When these ions pair with Ag^+ , Hg_2^{2+} , or Pb^{2+} , the resulting compounds are insoluble.									
SO4 ²⁻	When SO_4^{2-} pairs with Sr^{2+} , Ba^{2+} , Pb^{2+} , Ag^+ , or Ca^{2+} , the resulting compound is insoluble.									
Compounds Containing the Following Ions Are Generally Insoluble	Exceptions									
OH^- and S^{2-}	When these ions pair with Li ⁺ , Na ⁺ , K ⁺ , or NH ₄ ⁺ , the resulting compounds are soluble.									
	When S^{2-} pairs with Ca^{2+} , Sr^{2+} , or Ba^{2+} , the resulting compound is soluble.									
	When OH ⁻ pairs with Ca ²⁺ , Sr ²⁺ , or Ba ²⁺ , the resulting compound is slightly soluble.									
$\rm CO_3{}^{2-}$ and $\rm PO_4{}^{3-}$	When these ions pair with Li ⁺ , Na ⁺ , K ⁺ , or NH ₄ ⁺ , the resulting compounds are soluble.									

VIIIA 18	He ²	4.003	10	Ne	20.18	18	Ar	39.95	36	Ъ	83.80	54	Xe	131.3	86	Rn	[222]	118		[293]						
VIIA		17	6	ш	19.00	17	ច	35.45	35	Ŗ	79.90	53	_	126.9	85	At	[210]	117								
VIA		16	8	0	16.00	16	ა	32.07	34	Se	78.96	52	Te	127.60	84	Ро	[210]	116		[289]	70	٩۲	173.0	102	No	[259]
٨٨		15	7	z	14.01	15	٩	30.97	33	As	74.92160	51	Sb	121.8	83	Bi	209.0	115			69	Tm	168.9	101	Md	[258]
IVA		14	9	ပ	12.01	14	Si	28.09	32	Ge	72.61	50	Sn	118.7	82	Рb	207.2	114		[285]	89	ц	167.3	100	Е'n	[257]
AIII		13	5	Ш	10.81	13	A	26.98	31	Ga	69.72	49	Ч	114.8	81	F	204.4	113			29	Ч	164.9	66	Es	[252]
								12	30	Zn	65.39	48	Cd	112.4	80	Hg	200.6	112		[277]	99	Dy	162.50	86	Ç	[251]
								11	29	Cu	63.55	47	Ag	107.9	79	Au	197.0	111		[272]	95	Tb	158.9	26	BK	[247]
lents								10	28	Ż	58.69	46	Ъd	106.4	78	Pt	195.1	110		[269]	64	Ъд	157.3	96	Cm	[247]
Elem								9	27	ပိ	58.93	45	Rh	102.9	17	느	192.2	109	Mt	[268]	63	Eu	152.0	96	Am	[243]
of the								8	26	Fe	55.85	44	Ru	101.1	76	0s	190.2	108	Hs	[265]	62	Sm	150.4	64	Pu	[244]
able (7	25	Мn	54.94	43	Tc	[98]	75	Re	186.2	107	Bh	[264]	61	Pm	[145]	63	dN	[237]
odic T								9	24	Ç	52.00	42	Мо	95.94	74	3	183.8	106	Sg	[266]	09	PN	144.2	92	D	238.0
Peric								5	23	>	50.94	41	qN	92.91	73	Ta	180.9	105	Db	[262]	69	ኯ	140.9	91	Pa	231.0
								4	22	F	47.87	40	Zr	91.22	72	Ηf	178.5	104	Rf	[261]	58	ce	140.1	06	Ч	232.0
								ы	21	Sc	44.96	39	≻	88.91	71	Lu	175.0	103	۲	[262]	57	La	138.9	89	Ac	[227]
All		2	4	Be	9.012	12	Mg	24.31	20	Ca	40.08	38	S	87.62	56	Ba*	137.3	88	Ra**	[226]		*			**	
۲ ۲	- I	1.008	3	:	6.941	11	Na	22.99	19	×	39.10	37	Rb	85.47	55	Cs	132.9	87	Ľ	[223]						