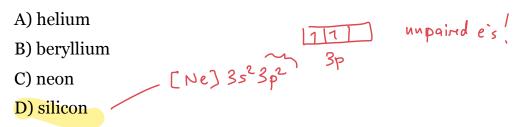
General Chemistry 1 (CHEM 1141) Shawnee State University – Fall 2019 December 5, 2019

Exam #4A

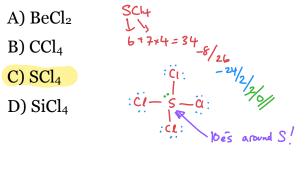
Name

Please write your full name, and the exam version (4 A) that you have on the scantron sheet ! (Bubble in the best answer choice for each question on the green & white scantron sheet in pencil !)

Please ☑ check the box next to your correct section number.												
Section #:	 I. (Monday Lab, 11:10 AM - 1:55 PM) 2. (Wednesday Lab, 11:10 AM - 1:55 PM) 3. (Monday Lab, 2:30 PM - 5:20 PM) 4. (Wednesday Lab, 2:30 PM - 5:20 PM) 5. (Thursday Lab, 12:30 PM - 3:20 PM) 6. (Tuesday Lab, 12:30 PM - 3:20 PM) 	} } }	Fleeman Napper Finnen									

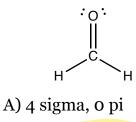

Multiple Choice:	 / 50
Q21:	 / 10
Q22:	 / 10
Q23:	 / 10
Q24:	 / 10
Q25:	 / 10
BONUS:	 / 5
TOTAL:	 / 100

You are only allowed to use a TI30-XIIS or equivalent non-programmable calculator on this exam ! (This means no cell phones, no smart phones, no smart watches, no iPads, or any other such devices will be allowed !)



- Q1. Who is credited with the invention of the periodic table in the late 1860s, whereby the elements were ordered by atomic mass?
 - A) Pauli
 - B) Schrodinger
 - C) Moseley
 - D) Mendeleyeev

Q2. Which of the following atoms will be **paramagnetic** in their ground state?


- Q3. The chemical equation corresponding to the first ionization energy of carbon is: A) $C(g) \rightarrow C^+(g) + e^-$ B) $C(g) + e^- \rightarrow C^-(g)$ C) $C^+(g) \rightarrow C^{2+}(g) + e^-$
 - D) $C^{2+}(g) + e^- \rightarrow C^+(g)$
- Q4. Which compound below has an expanded octet:

Q5. The bond angle in a tetrahedral molecule is

A) 90° <mark>B) 109.5°</mark>

- C) 120⁰
- D) 180⁰
- Q6. How many sigma and pi bonds are there in the following molecule:

- B) 3 sigma, 1 pi
- C) 2 sigma, 2 pi
- D) 1 sigma, 3 pi

Q7. What is the correct name of the compound, Cr_2O_3

- A) chromium oxide
- B) dichromium trioxide
- C) chromium(II) oxide
- D) chromium(III) oxide
- Q8. How many **atoms** are there in 16.04 g of CH_4 ?
 - A) 6.022×10^{23} B) 1.204×10^{23} C) 3.011×10^{24} D) 4.306×10^{22} $16.04g CH_{4} \times \frac{1mol CH_{4}}{16.04g CH_{4}} \times \frac{6.022 \times 10^{23} CH_{4}}{1mol CH_{4}} \times \frac{5 ahoms}{1 CH_{4}} = 3.011 \times 10^{24}$

 $C_{r_2O_3}^{3+}$

Q9. A hydrocarbon contains 81.71 % carbon and 18.29 % hydrogen by mass. Its empirical formula is:

A) CH ₂	<u> </u>
B) CH ₃	$81.71gC \times \frac{1 \mod C}{12.01gC} = 6.803 \mod C$
C) C ₂ H ₉	
D) C ₃ H ₈	$18.29 \text{ gH} \times \frac{1 \text{ mol } H}{1.008 \text{ gH}} = 18.14 \text{ mol } H$ 6.803 and 2.667 H $18.29 \text{ gH} \times \frac{1.008 \text{ gH}}{1.008 \text{ gH}} = 18.14 \text{ mol } H$
	C3H8 C 3C: 8H C×3

Q10. Which quantum number determines the **shape** of an orbital?

- A) *n*
- B) *l*
- **C**) *m*_l
- D) m_s
- Hot tea is a solution containing caffeine, water, and various polyphenols that are Q11. present in a consistent composition throughout. It can best be described as being a(n): A) heterogeneous mixture
 - B) compound
 - C) homogeneous mixture
 - D) extensive solution
- Q12. Which of the following atoms or ions would have the **smallest** radius?
 - A) K
 - B) K+
 - C) Na
 - D) Na⁺
- Q13. Which diatomic molecule would contain the **shortest** covalent bond?
 - A) Br_2
 - B) Cl_2
 - C(-C)C) O_2
 - NEN: @ triple bond: strong + short! D) N_2

Br-Br:

Q14. According to valence bond theory, which orbitals on bromine atoms overlap in the formation of the bond in Br_2 ? full partially occupied A) 4s $Br: [Ar] 4s^2 3d^{10} 4p^5$

- B) 4p VB theory: 2 orly overlap or/ 2e (usually le/orb) C) 4d D) 4f

Q15. Consider the molecule below. Determine the hybridization at each of the three labeled atoms.

:O: H	# Ap	geom	angles	hybrids
$: \begin{array}{cccc} : O : & H \\ \vdots & & & \\ : CI & & \\ : CI & \\ : CI & \\ : & 1 \\$	2	hivear	186	sp
	3	brig.planar	(20°	sp ²
A) $1 = sp^2$, $2 = sp^3$, $3 = sp^3$ B) $1 = sp^2$, $2 = sp^3$, $3 = sp^2$	4	tetrahedral	109.5°	sp ³
C) $1 = sp^3$, $2 = sp^3$, $3 = sp^3$	5	trigonal bipyramidal	ଵ ୖ,୲୵⊳୕ୖ,୲ୡୖ	sp ³ d
D) $1 = sp^3$, $2 = sp^3$, $3 = sp^2$	6	octahidral	90°,186°	sp ^s d²

Q16. Choose the ground state electron configuration for Cr^{3+}

A) [Ar] 3d ³	Cr [Ar] 45' 3d5	(Anf Ban exception)
B) [Ar] $4S^1 3d^2$		
C) [Ar] 4s ² 3d ⁶	(r ³⁴ [Ar] 3d ³	(remove 4s befor 3d)
D) [Ar] $4s^23d^1$		Valency cost n=4
		n=3

Q17. Give the molecular geometry and the number of *electron groups* (#repulsions) for BrF₅.

A) seesaw,	5 electron groups
B) square pyramidal,	6 electron groups
C) t-shaped,	5 electron groups
D) octahedral,	6 electron groups

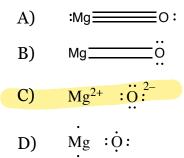
Q18. Choose the compound below that contains at least one polar covalent bond but is

nonpolar. A) CF_4

B) HCN

- C) SeBr₄
- D) ICl₃

F = F

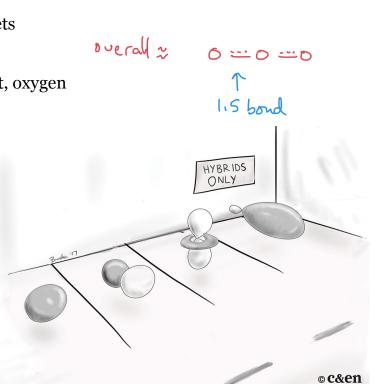

F - C - F

Brfs \downarrow \downarrow $7 + 7rS = 42e^{-1}$ $\frac{10}{32}$ $\frac{10}{3}$ $\frac{10}{3}$ $\frac{10}$

+> = bond-dipoles

bonds are polar, but overall dipole=0 <u>since</u> bond dipoles all cancel ort! (opposing dirns)

Q19. Identify the correct Lewis structure for MgO


Q20. What is the best explanation for the fact that both bonds in ozone, O_3 , have exactly the same strength? $\left[\begin{array}{c} \dot{O} - \dot{O} = \ddot{O} \\ \dot{O} - \dot{O} = \dot{O} \end{array} \right] \leftarrow \left[\begin{array}{c} \dot{O} = \dot{O} - \dot{O} \\ \dot{O} = \dot{O} \end{array} \right]$

A) The central atom is sp³ hybridized

B) Both outer atoms have complete octets

C) Ozone has resonance structures

D) Ozone is a stable form of the element, oxygen

Each problem in this section (short answer) is worth 10 points ! All work must be show in order to receive credit !

You must use the factor–label (conversion–factor) method for all conversions ! Be sure to include units where applicable !

All numeric answers must be rounded to the correct number of significant figures !

Hund's rule

Shielding

7. Pauli principle

6. Sulfur

4.

5.

- Q21. Place the correct number next to the letter that best matches. *(use each number only once)*
- A. Increases across the periods from left to 1. Beryllium right
 B. States that electrons enter unoccupied 2. First ionization energy
- orbitals in a subshell with parallel spins before pairing up
- C. An element that is capable of expanding its 3. Auf Bau octet
- D. An element that is frequently electron deficient
- $\frac{| \circ |}{| \circ |} E.$ Decreases across the periods from left to right
- <u>3</u> F. States that electrons tend to enter lower energy subshells first before entering higher energy subshells
- **G**. The effect by which core electrons tend to reduce the effective nuclear charge felt by valence electrons
- $\overrightarrow{}$ H. States that electrons must have a unique set 8. Core of quantum numbers in an atom \swarrow L. The 2s electrons in a magnesium atom 9. Valet
- $\underline{\mathbf{X}}$ I. The 2s electrons in a magnesium atom 9. Valence
- $\underline{\uparrow}$ J. The 2p electrons in a nitrogen atom 10. Atomic radii

Q22. The polyatomic ion, OCP⁻ has several resonance structures that contribute to its electronic description. Three possible resonance structures are drawn below.

i) Determine the formal charge for each atom in the structures: FC , a town share e's in bond.

			 = P] -	\longleftrightarrow	- [: 0 <u></u>]		-₽:] ~		$ = \left[: \underbrace{O_{\ell}}_{i} \underbrace{O_{\ell}}_{i} C \xrightarrow{3} \underbrace{O_{\ell}}_{i} P : \right]^{-1} $								
	0_0				0 <u>+(</u>			0	_(
	C _O				C <u>o</u>			С	0								
	P(P <u>-2</u>			Р	0								
ORIG NOW FC		C 4 4	P 5 6 -1		0 6 5 +1	-	P 5 7		0 6 7 -l		P 5 5 5 0						

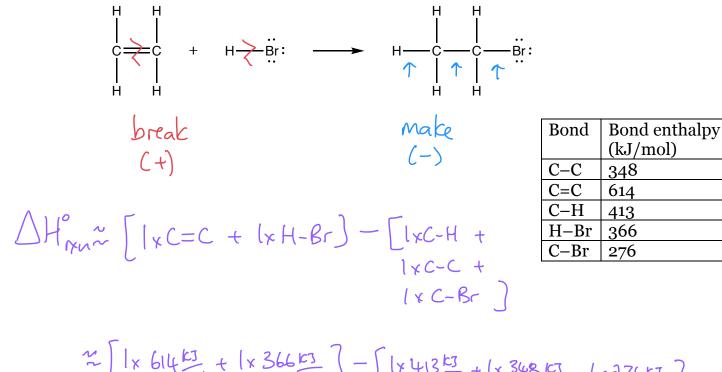
ii) **Explain** which structure (left, middle, right) likely contributes the most to our electronic description of the ion?

Right. (1) Lowert sum of FCl (2) - (FC is on most electronegable atom (O us. P) Q23. Write out **full** electron configurations for the following atoms/ions:

1522522pb 3523pb 452 3d2 i) Ti ii) Cu $|s^2 2s^2 2p^b 3s^2 3p^b 4s' 3d^{10}$ (auf ban exception!) iii) Ni²⁺ $|s^2 2s^2 2p^b 3s^2 3p^b 3d^8$ (remove from 4s before 3d) valence core Write out the orbital diagram for: 11/11 iv) Ti 11/11/11/ 11/]72/ 174 111 1212121 4s30 3s 3p 15 2s

Is Ti diamagnetic or paramagnetic? Explain!

20


Paramagnetic, due to it having two(2) unpaired es in 3d subshell --8---

- Q24. Predict the molecular geometry and polarity of NF_3 . Your answer should include: \Box A valid Lewis structure
 - □ The total number of valence electrons
 - □ A sketch of the geometry using line/dash/wedge notation
 - □ The value of the bond angle(s) written out
 - □ The name of both the **molecular** and **electron** geometry
 - \Box A <u>clear explanation</u> of why NF₃ is polar or non-polar

$$NF_{3}$$

 $J J J$
 $5 + 7 + 3 = 26e^{-1}$
 F_{-1}
 F

overall dipole: "(I F

Q25. (i) Using the table of bond dissociation energies below, estimate ΔH for the following gas-phase chemical equation:

$$\frac{1}{2} \left[\frac{1}{1} \times \frac{614 \frac{1}{1}}{1} + \frac{1}{1} \times \frac{366 \frac{1}{1}}{1} \right] - \left[\frac{1}{1} \times \frac{413 \frac{1}{1}}{1} + \frac{1}{1} \times \frac{348 \frac{1}{1}}{1} + \frac{1}{1} \times \frac{376 \frac{1}{1}}{1} \right]$$

(ii) What is the molecular geometry about each carbon atom in the **reactant** molecule, C_2H_4 ?

trigonal planar, 120° (3 reps)

(iii) According to valence bond theory, the C–H bond in the **reactant** molecule, C_2H_4 forms from the overlap between which two orbitals?

Exam checklist:

(Check the boxes to certify the following:)

- □ My full name is written legibly on the front page
- $\hfill\square$ My correct lab section has been indicated on the front page
- \square My full name is written legibly on the scantron sheet
- □ My exam version (4A, 4B, 4C, or 4D) is written on the scantron sheet
- $\square\,$ I have shown work for all problems (where appropriate), paying attention to
 - Significant figures / decimal places
 - o Units
- $\hfill\square$ I have used the conversion-factor method for all conversions

Thank-you from the Chemistry Professors and Good Luck!

Useful information:

 $N_A \!= 6.022 \times 10^{23} \text{ mol}^{-1}$

∢	 				-			10	1								_										
VIIIA 18	² He	4.003	10	Ne	20.18	18	Ar	39.95	36	Ā	83.80	54	Xe	131.3	98	R	[222]	118		[293]							
VIIA		17	6	ш	19.00	17	ប	35.45	35	Ŗ	79.90	53	-	126.9	85	At	[210]	117			-						
VIA		16	8	0	16.00	16	S	32.07	8	Se	78.96	52	Te	127.60	84	Ро	[210]	116		[289]	i	20	٩۲	173.0	102	°N N	[259]
٨٨		15	7	z	14.01	15	٩	30.97	33	As	74.92160	51	Sb	121.8	83	Bi	209.0	115				69	Tm	168.9	101	Md	[258]
IVA		14	9	ပ	12.01	14	Si	28.09	32	Ge	72.61	50	Sn	118.7	82	Pb	207.2	114		[285]		68	ш	167.3	100	EB	[257]
MIIA		13	5	Ю	10.81	13	A	26.98	31	Ga	69.72	49	<u>_</u>	114.8	81	F	204.4	113				67	Р	164.9	66	Es	[252]
								12	30	Zn	65.39	48	Cd	112.4	80	Hg	200.6	112		[277]		66	5	162.50	98	ູ່ວ	[251]
								11	29	Cu	63.55	47	Ag	107.9	52	Au	197.0	111		[272]		65	Тb	158.9	67	ų	[247]
ents								10	28	ī	58.69	46	Р	106.4	78	Ŧ	195.1	110		[269]		64	Gd	157.3	96	с С	[247]
Elem								6	27	ပိ	58.93	45	Rh	102.9	77	L	192.2	109	Mt	[268]		63	Eu	152.0	96	Am	[243]
of the								8	26	Ге	55.85	44	Ru	101.1	76	os	190.2	108	Hs	[265]		62	Sm	150.4	94	Pu	[244]
dic Table of the Elements								7	25	Mn	54.94	43	Tc	[98]	75	Re	186.2	107	Bh	[264]		61	Рп	[145]	63	dN	[237]
dic T								9	24	ບັ	52.00	42	Μo	95.94	74	3	183.8	106	Sg	[266]		60	Nd	144.2	92	∍	238.0
Perio								5	23	>	50.94	41	qN	92.91	73	Та	180.9	105	Db	[262]		59	P	140.9	91	Ра	231.0
								4	22	F	47.87	40	z	91.22	72	Ηf	178.5	104	Ł	[261]		58	Сe	140.1	06	Ч	232.0
								ę	21	Sc	44.96	39	≻	88.91	71	Ľ	175.0	103	Ļ	[262]		57	La				[227]
ЫI		2	4	Be	9.012	12	Mg	24.31	20	Ca	40.08	38	ş	87.62	56	Ba*	137.3	88	Ra**	[226]	L		*			*	
A -	- エ	1.008	3	:-	6.941	11	Na	22.99	19	×	39.10	37	Rb	85.47	55	cs	132.9	87	ŗ	[223]							