General Chemistry 1 (CHEM 1141)

Shawnee State University – Autumn 2022

November 10, 2022

Exam # 3A

Name _____

• •	rsion (3A) that you have on the scantron sheet! h question on the scantron sheet in pencil!)
Please ☑ check the box next to your correct section num	mber.
Section #:□ 1. (Mon Lab, 10:10 AM – 1:00 PM) □ 2. (Wed Lab, 10:10 AM – 1:00 PM) □ 3. (Tue Lab, 11:00 AM – 1:50 PM) □ 4. (Thu Lab, 11:00 AM – 1:50 PM)	Fleeman Napper

Multiple Choice:	 / 50
Q21:	 / 10
Q22:	 / 10
Q23:	 / 10
Q24:	 / 10
Q25:	 / 10
BONUS:	 / 3
TOTAL:	 / 100

Each problem in this section (multiple choice) is worth 2.5 points!

- Q1. The distance between adjacent crests on a wave is called:
 - A) frequency
 - B) amplitude
 - C) wavelength
 - D) quanta
- Q2. An endothermic reaction has:
 - A) a positive ΔH , absorbs heat from the surroundings, and feels cold to the touch
 - B) a positive ΔH , absorbs heat from the surroundings, and feels warm to the touch
 - C) a negative ΔH , gives off heat to the surroundings, and feels cold to the touch
 - D) a negative ΔH , gives off heat to the surroundings, and feels warm to the touch
- Q3. Choose the reaction that illustrates ΔH^{o}_{f} (standard enthalpy of formation) for $Mg(NO_{2})_{2}$.
 - A) $Mg(s) + N_2(g) + 2 O_2(g) \rightarrow Mg(NO_2)_2(s)$
 - B) $Mg^{2+}(aq) + 2 NO_2^{-}(aq) \rightarrow Mg(NO_2)_2(aq)$
 - C) $Mg(s) + 2 N(g) + 4 O(g) \rightarrow Mg(NO_2)_2(s)$
 - D) $Mg(NO_2)_2(s) \rightarrow Mg(s) + N_2(g) + 4 O_2(g)$
- Q4. The value of ΔH^{o}_{rxn} for the following reaction is -6535 kJ/mol.

$$2C_6H_6(l) + 15O_2(g) \rightarrow 12CO_2(g) + 6H_2O(g)$$

How many kilojoules of heat will be evolved during the combustion of 16.0 g of C₆H₆(l)?

- A) 679 kJ
- B) 659 kJ
- C) 335 kJ
- D) 669 kJ

- Q5. When an automobile engine starts, the metal parts immediately begin to absorb heat released during the combustion of gasoline. How much heat will be absorbed by a 165 kg iron engine block as the temperature rises from 15.7°C to 95.7°C? (The specific heat of iron is 0.489 J/g·°C.)
 - A) 6250 kJ
 - B) 6.25 kJ
 - C) 6.45 kJ
 - D) 6450 kJ
- Q6. Which of the following visible colors of light has the longest wavelength?
 - A) blue
 - B) green
 - C) red
 - D) violet
- Q7. Which one of the following sets of quantum numbers is not possible? (n, l, m_l , m_s)
 - A) 4, 3, -2, +1/2
 - B) 3, 0, 1, -1/2
 - C) 3, 0, 0. +1/2
 - D) 2, 1, 1, -1/2
- Q8. Given the following thermochemical equation:

$$3A \rightarrow 4B + C$$

$$\Delta H = -24 \text{ kJ/mol}$$

determine the value of ΔH for the reaction:

$$2C + 8B \rightarrow 6A$$

$$\Delta H = ??$$

- A) +24 kJ/mol
- B) -42 kJ/mol
- C) +48 kJ/mol
- D) -48 kJ/mol

Q9.	What is the maximum number of p orbitals allowed?
	A) o
	B) 1
	C) 3
	D) 5
Q10.	What is the wavelength of radiation that has a frequency of $5.39 \times 10^{14}/s$?
	A) $1.61 \times 10^{23} \text{ nm}$
	B) $1.80 \times 10^{-3} \text{ nm}$
	C) 618 nm
	D) 556 nm
Q11.	A system where neither heat nor matter can flow between the system and the
	surroundings is called:
	A) Open
	B) Sealed
	C) Closed
	D) Isolated
Q12.	The SI derived unit for energy is the:
	A) Calorie
	B) Joule
	C) Erg
	D) Kilowatt hour
Q13.	If object A has twice the specific heat capacity and twice the mass of object B, then an
	equal amount of heat absorbed by the two objects results in what temperature change?
	(Assume no phase transition occurs.)
	A) Object B will increase in temperature by twice that of object A
	B) Object A will increase in temperature by twice that of object B
	C) Object B will increase in temperature by four times of object A
	D) Object A will increase in temperature by four times of object B
	E) Objects A & B will both change by the same temperature
	-4-

Q14.	Enthalpy is an example of a state function. This means that:
	A) Changes in enthalpy depend upon the way the process is carried out
	B) The value of enthalpy does not depend upon the pressure
	C) The value of enthalpy is independent of temperature
	D) Changes in enthalpy do not depend upon the path taken
Q15.	Which substance has a standard enthalpy of formation of zero?
	A) $N_2(g)$
	B) Cl(g)
	C) C(s, diamond)
	D) He(s)
Q16.	The Greek letter used for the frequency of a wave is:
	A) nu (v)
	B) lambda (λ)
	C) alpha (α)
	D) psi (ψ)
Q17.	Which of the following transitions in a hydrogen atom would result in emission of the
	longest wavelength of light?
	A) $3 \rightarrow 2$
	B) $3 \rightarrow 1$
	C) $2 \rightarrow 3$
	D) $1 \rightarrow 3$
Q18.	Which quantum number primarily determines the shape of an orbital?
	A) n
	B) <i>l</i>
	C) <i>m</i> _l
	D) m_s

Q19.	Which quantum number primarily determines the size of an orbital?
	A) n
	B) <i>l</i>
	C) <i>m</i> _l
	D) m_s
Q20.	Which quantum number primarily determines the orientation of an orbital?
	A) n
	B) <i>l</i>
	C) <i>m</i> _l
	D) m_s

Each problem in this section (short answer) is worth 10 points! All work must be shown to receive credit! You must use the factor–label (conversion–factor) method for all conversions! Be sure to include units where applicable!

All numeric answers must be rounded to the correct number of significant figures!

Q21. Calculate ΔH for the reaction:

$$5 C(s) + 6 H_2(g) \rightarrow C_5 H_{12}(l)$$

(a) Use the following reactions and given ΔH values to calculate the ΔH for the reaction in **bold. Show your work clearly!**

$$C_5H_{12}(l) + 8 O_2(g) \rightarrow 5 CO_2(g) + 6 H_2O(g)$$
 $\Delta H = -3244.8 \text{ kJ/mol}$

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -393.5 \text{ kJ/mol}$

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$$
 $\Delta H = -483.5 \text{ kJ/mol}$

(b) Specify if the reaction is endothermic or exothermic.

Q22.	Two solutions, initially at 24.69°C, are mixed in a coffee cup calorimeter. When a 200.0
	mL volume of 0.100 M AgNO $_3$ solution is mixed with a 100.0 mL sample of 0.100 M
	NaCl solution, the temperature in the calorimeter rises to 25.16°C.

(a) Write a balanced equation for the process.

(b) Determine the ΔH^o_{rxn} , in units of **kJ/mol**. Assume that the density and specific heat of the solutions is the same as that of water. The density of water is 1.00 g/mL and the specific heat of water = 4.184 J/g°C.

Q23.	(a) Calculate the wavelength of light emitted or absorbed when the transition
	$n=6 \rightarrow n=3$ occurs.

(b) Determine if this transition from $n=6 \rightarrow n=3$ represents an **emission** or an **absorption**. Circle the correct choice in bold.

Q24. Fill in the blanks. For each blank, choose an answer choice from the word bank provided below. There are more answer choices than blanks.

 $0\ 1\ 2\ 3\ 4$ Wavelength Energy Frequency Infrared

Ultraviolet Gamma rays X-rays Microwave Radio waves Groundstate Excited-States Emission Absorption Principal quantum

number (n) Angular momentum quantum number (l) Magnetic

quantum number (m_l) Electron spin quantum number (m_s)

The electrons in a hydrogen atom can exist in various energy levels described
using the quantum number n . The lowest energy level corresponds to a value of $n =$
and is called the Higher energy levels are referred to as
When an electron transitions from (say) $n = 4$ to $n = 2$, this
results in the of a photon of EM (electromagnetic) radiation. When
comparing two sets of transitions, the one with the largest energy difference will result
in the photon having a smaller
The EM (electromagnetic) spectrum consists of various named regions. The region nex
to visible light with a slightly shorter wavelength is called, whereas the
region next to visible light with a slightly longer wavelength is called In
general, photons with extremely high frequency are referred to as,
whereas photons with the extremely low frequency are called
Atoms have four different quantum numbers that are used to describe their orbitals.
The one that primarily determines the energy of an orbital is the

Q25.	(a) Write out the chemical equation that corresponds to the standard enthalpy of formation reaction for 1-propanol, CH_3CH_2OH .
	(b) A 3.22 g sample of metal absorbs 56.0 J of heat and changes temperature from 23.3 °C to 54.4 °C. Calculate the (i) heat capacity of the metal, and (ii) the specific heat capacity of the metal.
	(c) Calculate the frequency of a photon with a wavelength of 455 nm.

3 Point Bonus Question

What combination of quantum numbers is referred to as a *subshell* in the quantum mechanics of an atom?

Exam checklist:

(Check the boxes to certify the following:)

☐ My full name is written legibly on the front page
☐ My correct lab section has been indicated on the front page
☐ My full name is written legibly on the scantron sheet
\square My exam version (A, B, C, or D) is written on the scantron sheet
\square I have shown work for all problems (where appropriate), paying attention to
 Significant figures / decimal places
o Units
$\ \square$ I have used the conversion-factor method for all conversions
☐ If I have torn off the back page (periodic table), I will not turn it in with my exam!

Thank you from the Chemistry Professors and Good Luck!

Useful information:

$$q = m \cdot s \cdot \Delta t$$
 or $q = m \cdot c \cdot \Delta t$ $q = C \cdot \Delta t$

$$c = v \cdot \lambda$$
 $E = h \cdot c / \lambda$ $E = h \cdot v$

$$c = 3.00 \times 10^8 \text{ m/s}$$
 $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$ $R_H = 2.18 \times 10^{-18} \text{J}$

$$N_A = 6.022 \times 10^{23}$$

$$\lambda = \frac{h}{mv} \qquad E_n = -R_{\rm H} \left(\frac{1}{n^2} \right)$$

VIIIA	2 He	4.003	10	Ne	20.18	18	Ā	39.95	36	궃	83.80	54	Xe	131.3	98	R	[222]	118		[293]						
V II∕	į	11	6	щ	19.00	17	ច	35.45	32	Ŗ	79.90	53	_	126.9	85	Αt	[210]	117								
ΑIA	Ç	16	8	0	16.00	16	S	32.07	34	Se	78.96	52	Те	127.60	84	Ро	[210]	116		[289]	70	Υb	173.0	102	٥	[259]
\$	ţ	75	7	Z	14.01	15	۵	30.97	33	As	74.92160	51	Sb	121.8	83	Bi	209.0	115			69	Tm	168.9	101	Md	[258]
≥	;	14	9	ပ	12.01	14	Si	28.09	32	Ge	72.61	09	Sn	118.7	82	Pb	207.2	114		[285]	89	Ē	167.3	100	Fm	[257]
ĕ	Ç	13	2	В	10.81	13	₹	26.98	31	Ga	69.72	67	므	114.8	81	F	204.4	113			29	유	164.9	66	Es	[252]
								12	90	Zn	65.39	48	ပ်	112.4	08	Hg	200.6	112		[277]	99	Dy	162.50	86	ჯ	[251]
								11	58	Cn	63.55	47	Ag	107.9	6/	Αn	197.0	111		[272]	92	Тb	158.9	26	BK	[247]
ents								10	28	Ż	58.69	46	Pd	106.4	8/	ቷ	195.1	110		[269]	64	Вq	157.3	96	Cm	[247]
Elem								6	22	ပိ	58.93	45	Rh	102.9	2.2	<u>-</u>	192.2	109	Μţ	[268]	63	Eu	152.0	96	Am	[243]
of the								8	56	Fe	55.85	44	Ru	101.1	9/	Os	190.2	108	Hs	[265]	62	Sm	150.4	94	Pu	[244]
able of the Elements								7	52	Mn	54.94	43	ဍ	[98]	9/	Re	186.2	107	Bh	[264]	61	Pm	[145]	63	о И	[237]
Periodic T								9	24	င်	52.00	42	M٥	95.94	74	>	183.8	106	Sg	[266]	09	PZ	144.2	76	-	238.0
Peric								5	23	>	50.94	41	q	92.91	23	Та	180.9	105	Вb	[262]	29	P	140.9	91	Ра	231.0
								4	22	F	47.87	40	Zr	91.22	7.5	Ħ	178.5	104	Ř	[261]	28	Ce	140.1	06	Т	232.0
								3	21	Sc	44.96	68	>	88.91	1.1	Γn	·		בֿ	[262]	22	La	138.9	68		[227]
≝		N	4	Be	9.012	12	Mg	24.31	20	Ca	40.08	38	Š	87.62	99	Ba*	137.3	88	Ra**	[226]		*			*	
₫ ~	- T 3	1.008	င	=	6.941	11	Na	22.99	19	¥	39.10	37	Rb	85.47	22	S			Fr							